
Game playing

Chapter 5, Sections 1–6

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 1

Outline

♦ Games

♦ Perfect play
– minimax decisions
– α–β pruning

♦ Resource limits and approximate evaluation

♦ Games of chance (briefly)

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 2

Games as search problems

The main difference to the previous slides:
now we have more than one agent that have different goals.

– All possible game sequences are represented in a game tree.
– The nodes are the states of the game, e.g. the board position in chess.
– Initial state and terminal nodes.
– States are connected if there is a legal move/ply.
– Utility function (payoff function).
– Terminal nodes have utility values 0, 1 or -1.

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 3

Types of games

deterministic chance

perfect information

imperfect information

chess, checkers,
go, othello

backgammon
monopoly

bridge, poker, scrabble
nuclear war

battleships,
blind tictactoe

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 4

Strategies for Two-Player Games

Given two players calledMax andMin, Max wants to maximize the utility
value. Since Min wants to minimize the same value, Max should choose
the alternative that maximizes given that MIN minimized.

Minimax algorithm

Minimax(state) =
if Terminal-Test(state) then

return Utility(state)
if state is a Max node then

return maxs Minimax(Result(state, s))
if state is a Min node then

return mins Minimax(Result(state, s))

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 5

Game tree (2-player, deterministic, turns)

XX
XX

X
X

X

XX

MAX (X)

MIN (O)

X X

O

O
OX O

O
O O

O OO

MAX (X)

X OX OX O X
X X

X
X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL
XX

−1 0 +1Utility

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 6

Minimax

Gives perfect play for deterministic, perfect-information games

Idea: choose the move with the highest minimax value
= best achievable payoff against best play

E.g., 2-ply game:

MAX

3 12 8 642 14 5 2

MIN

3

A
1

A
3

A
2

A 13A 12A 11
A 21 A 23

A 22
A 33A 32

A 31

3 2 2

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 7

Minimax algorithm

function Minimax-Decision(state) returns an action

inputs: state, current state in game

return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state) returns a utility value

if Terminal-Test(state) then return Utility(state)

v←−∞

for a, s in Successors(state) do v←Max(v, Min-Value(s))

return v

function Min-Value(state) returns a utility value

if Terminal-Test(state) then return Utility(state)

v←∞

for a, s in Successors(state) do v←Min(v, Max-Value(s))

return v

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 8

Properties of minimax

Complete?? Yes, if the game tree is finite

Optimal?? Yes, against an optimal opponent

Time complexity?? O(bm)

Space complexity?? O(bm) (depth-first exploration)

For chess, b ≈ 35, m ≈ 100 for “reasonable” games
⇒ an exact solution is completely infeasible

But do we need to explore every path?

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 9

α–β pruning

Suppose, we reach a node t in the game tree which has leaves t1, . . . , tk
corresponding to moves of player Min.

Let α be the best value of a position on a path from the root node to t.

Then, if any of the leaves evaluates to f (ti) ≤ α, we can discard t, because
any further evaluation will not improve the value of t.

Analogously, define β values for evaluating response moves of Max.

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 10

α–β pruning example

MAX

3 12 8

MIN 3

3

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 11

α–β pruning example

MAX

3 12 8

MIN 3

2

2

X X

3

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 12

α–β pruning example

MAX

3 12 8

MIN 3

2

2

X X
14

14

3

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 13

α–β pruning example

MAX

3 12 8

MIN 3

2

2

X X
14

14

5

5

3

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 14

α–β pruning example

MAX

3 12 8

MIN

3

3

2

2

X X
14

14

5

5

2

2

3

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 15

The α–β algorithm

function Alpha-Beta-Decision(state) returns an action

return the a in Actions(state) maximizing Min-Value(Result(a, state))

function Max-Value(state,α,β) returns a utility value

inputs: state, current state in game

α, the value of the best alternative for max along the path to state

β, the value of the best alternative for min along the path to state

if Terminal-Test(state) then return Utility(state)

v←−∞

for a, s in Successors(state) do

v←Max(v, Min-Value(s,α,β))

if v ≥ β then return v

α←Max(α, v)

return v

function Min-Value(state,α,β) returns a utility value

same as Max-Value but with roles of α,β reversed

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 16

Properties of α–β pruning

Pruning does not affect the final result

A good move ordering improves the effectiveness of pruning

With “perfect ordering”, the time complexity becomes O(bm/2)
⇒ this doubles the solvable depth

This is a simple example of the value of reasoning about which
computations are relevant (a form of metareasoning)

Unfortunately, 3550 is still impossible!

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 17

Resource limits

The standard approach is to cutoff the search at some point:

• Use Cutoff-Test instead of Terminal-Test

– use a depth limit
– perhaps add quiescence search

• Use Eval instead of Utility

– i.e., an evaluation function that estimates desirability of position

Suppose we have 10 seconds per move, and can explore 105 nodes/second
–106 nodes per move ≈ 358/2 nodes
–α–β pruning reaches depth 8 ⇒ pretty good chess program

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 18

Evaluation functions

Black to move

White slightly better

White to move

Black winning

For chess, the evaluation function is typically linear weighted sum of features
Eval(s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)

e.g., w1 = 9 with
f1(s) = (number of white queens) – (number of black queens)

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 19

Deterministic games in practice

Chess: Deep Blue (IBM) beats chess world champion Garry Kasparov, 1997.
– Modern chess programs: Houdini, Critter, Stockfish.

Checkers/Othello/Reversi:
Human champions refuse to compete—computers are too good.
– Chinook plays checkers perfectly, 2007. It uses an endgame database

defining perfect play for all positions involving 8 or fewer pieces on the board,
a total of 443,748,401,247 positions.

– Logistello beats the world champion in Othello/Reversi, 1997.

Go: Human champions refuse to compete—computers are too bad.
– In Go, b > 300, so most programs use pattern knowledge bases to

suggest plausible moves.
– Modern programs: MoGo, Zen, GNU Go

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 20

Nondeterministic games: backgammon

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 21

Nondeterministic games in general

In nondeterministic games, chance is introduced by dice, card-shuffling, etc.

Simplified example with coin-flipping:

MIN

MAX

2

CHANCE

4 7 4 6 0 5 −2

2 4 0 −2

0.5 0.5 0.5 0.5

3 −1

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 22

Algorithm for nondeterministic games

ExpectiMinimax gives perfect play
– Just like Minimax, except we must also handle chance nodes

ExpectiMinimax(state) =
if Terminal-Test(state) then

return Utility(state)
if state is a Max node then

return maxs ExpectiMinimax(Result(state, s))
if state is a Min node then

return mins ExpectiMinimax(Result(state, s))
if state is a chance node then

return Σs P (s) ExpectiMinimax(Result(state, s))

where P (s) is the probability that s occurs

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 23

Nondeterministic games in practice

Dice rolls increase the branching factor b:
– there are 21 possible rolls with 2 dice

Backgammon has ≈ 20 legal moves (can be up to 4,000 with double rolls)
– depth 4⇒ 20× (21× 20)3 ≈ 1.2× 109 nodes

As depth increases, the probability of reaching a given node shrinks
– value of lookahead is diminished

α–β pruning is much less effective

TDGammon uses depth-2 search + very good Eval

≈ world-champion level

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 5, Sections 1–6 24

