LOCAL SEARCH ALGORITHMS

CHAPTER 4, SECTIONS 1-2
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Outline

¢ Hill-climbing
> Simulated annealing
{ Genetic algorithms (briefly)

{ Local search in continuous spaces (very briefly)
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Iterative improvement algorithms

In many optimization problems, the path is irrelevant;
the goal state itself is the solution

Then the state space can be the set of “complete” configurations
— e.g., for 8-queens, a configuration can be any board with 8 queens
— e.g., for TSP, a configuration can be any complete tour

In such cases, we can use iterative improvement algorithms;

we keep a single “current” state, and try to improve it
— e.g., for 8-queens, we gradually move some queen to a better place
— e.g., for TSP, we start with any tour and gradually improve it

The goal would be to find an optimal configuration
— e.g., for 8-queens, an optimal config. is where no queen is threatened
— e.g., for TSP, an optimal configuration is the shortest route

This takes constant space, and is suitable for online as well as offline search
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Example: Travelling Salesperson Problem

Start with any complete tour, and perform pairwise exchanges

- ® ®
/

Variants of this approach get within 1% of optimal very quickly
with thousands of cities
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Example: n-queens

Put n queens on an n X n board, with no two queens on the same column

Move a queen to reduce the number of conflicts;
repeat until we cannot move any queen anymore
— then we are at a local maximum, hopefully it is global too

h=5 h=2 h=0

This almost always solves 1-queens problems almost instantaneously
for very large 1 (e.g., n =1 million)
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Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function HILL-CLIMBING( problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current <— MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor<— a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current <— neighbor

end
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Hill-climbing contd.

It is useful to consider the state space landscape:

objectixe function lobal maximum

shoulder

local maximum

"flat" local maximum

»state space
current

state

Random-restart hill climbing overcomes local maxima
— trivially complete, given enough time

Random sideways moves
) escapes from shoulders () loops on flat maxima
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Simulated annealing

|dea: Escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function SIMULATED-ANNEALING( problem, schedule) returns a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature”

current <— MAKE-NODE(INITIAL-STATE[problem])

for 1< 1to oo do
T+ schedulel]
if 7'= 0 then return current
next<—a randomly selected successor of current
A FE <+ VALUE[nezt] — VALUE[current]
if AE > 0 then current<— next

else current < next only with probability e/

Note: The schedule should decrease the temperature 7'
so that it gradually goes to 0
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Local beam search

ldea: keep k states instead of 1; choose top £ of all their successors
This is not the same as k searches run in parallel!
Problem: quite often, all £ states end up on same local hill

ldea: choose k successors randomly, biased towards good ones
( “Stochastic local beam search”)
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Genetic algorithms (briefly)

|dea:

— a variant of stochastic local beam search
— generate successors from pairs of states

— the states have to be encoded as strings
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Genetic algorithms contd.

GAs require that the states are encoded as strings

The ‘crossover helps iff substrings are meaningful components

W

W

W

32752411 + 24748552
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Continuous state spaces (very briefly)

Suppose we want to site three airports in Romania:
— 6-D state space is defined by (1, 12), (72,v2), (3, y3)
— objective function f (1,12, 1o, Y2, T3, Y3) =
the sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers 40 change in each coordinate

Gradient methods compute

of of Of of Of Of
0z’ ayl7 0z’ 392’ Oxs’ Y3

to increase/reduce f, e.g., by x <— x + aV f(x)

Vf=

Sometimes we can solve for V f(x) = () exactly (e.g., with one city).
Newton—Raphson (1664, 1690) iterates x < x — H;l(X)Vf(X)
to solve V f(x) = 0, where H;; = 9 [ /0,0,
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