### Informed Search algorithms

Chapter 3, Sections 5–6

#### Review: Tree search

```
function TREE-SEARCH( problem) returns a solution, or failure

frontier \leftarrow {MAKE-NODE(INITIAL-STATE[problem])}

loop do

if frontier is empty then return failure

node \leftarrow REMOVE-FRONT(frontier)

if GOAL-TEST(problem, STATE[node]) then return node

frontier \leftarrow INSERTALL(EXPAND(node, problem), frontier)
```

A strategy is defined by picking the order of node expansion

#### Best-first search

Idea: use an evaluation function for each node

– estimate of "desirability"

⇒ Expand most desirable unexpanded node

#### Implementation:

frontier is a queue sorted in decreasing order of desirability

#### Special cases:

greedy search

A\* search

## Romania with step costs in km



| Strangme-ime distance |     |
|-----------------------|-----|
| to Bucharest          |     |
| Arad                  | 366 |
| Bucharest             | 0   |
| Craiova               | 160 |
| Dobreta               | 242 |
| Eforie                | 161 |
| Fagaras               | 178 |
| Giurgiu               | 77  |
| Hirsova               | 151 |
| Iasi                  | 226 |
| Lugoj                 | 244 |
| Mehadia               | 241 |
| Neamt                 | 234 |
| Oradea                | 380 |
| Pitesti               | 98  |
| Rimnicu Vilcea        | 193 |
| Sibiu                 | 253 |
| Timisoara             | 329 |
| Urziceni              | 80  |
| Vaslui                | 199 |
| Zerind                | 374 |
|                       |     |

### Greedy best-first search

Evaluation function h(n) (heuristic) = estimate of cost from n to the closest goal

E.g.,  $h_{\rm SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest}$ 

Greedy search expands the node that appears to be closest to goal









### Properties of greedy search

Complete?? No-it can get stuck in loops, e.g.,

 $\mathsf{lasi} \to \mathsf{Neamt} \to \mathsf{lasi} \to \mathsf{Neamt} \to$ 

Complete in finite space with repeated-state checking

<u>Time??</u>  $O(b^m)$ , but a good heuristic can give dramatic improvement

Space??  $O(b^m)$ —keeps all nodes in memory

Optimal?? No

#### $A^*$ search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

 $g(n) = \cos t$  so far to reach n

h(n) =estimated cost to goal from n

f(n) =estimated total cost of path through n to goal

A\* search uses an admissible heuristic

i.e.,  $h(n) \leq h^*(n)$  where  $h^*(n)$  is the **true** cost from n. (Also require  $h(n) \geq 0$ , so h(G) = 0 for any goal G.)

E.g.,  $h_{\rm SLD}(n)$  never overestimates the actual road distance

Theorem: A\* search is optimal

## $A^*$ search example



## $A^*$ search example



## A\* search example



## A\* search example



### $A^*$ search example



### $A^*$ search example



### Optimality of $A^*$

Lemma:  $A^*$  expands nodes in order of increasing f value

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with  $f = f_i$ , where  $f_i < f_{i+1}$ 



### Properties of $A^*$

Complete?? Yes, unless there are infinitely many nodes with  $f \leq f(G)$ 

Time??  $O(b^{\epsilon m})$ —where  $\epsilon = (h^* - h)/h^*$  is the relative error in h If h = 0, then  $\epsilon = 1$  and we get uniform-cost search If  $h = h^*$ , then it is perfect and we find the solution immediately

Space??  $O(b^m)$ —it keeps all nodes in memory

Optimal?? Yes—it cannot expand  $f_{i+1}$  until  $f_i$  is finished

 $\mathsf{A}^*$  expands all nodes with  $f(n) < C^*$ 

 $A^*$  expands some nodes with  $f(n) = C^*$ 

 $A^*$  expands no nodes with  $f(n) > C^*$ 

### Admissible heuristics

E.g., for the 8-puzzle:

$$h_1(n) = \text{number of misplaced tiles}$$

$$h_2(n) = \text{total Manhattan distance}$$

(i.e., no. of squares from desired location of each tile)



$$\frac{h_1(S)}{h_2(S)} = ??$$

### Admissible heuristics

E.g., for the 8-puzzle:

$$h_1(n) = \text{number of misplaced tiles}$$

$$h_2(n) = \text{total Manhattan distance}$$
 (i.e., no. of squares from desired location of each tile)



$$\frac{h_1(S)}{h_2(S)} = ??$$
 8  $\frac{h_2(S)}{1} = ??$  3+1+2+2+3+3+2 = 18

#### Dominance

If  $h_2(n) \ge h_1(n)$  for all n (both admissible) then  $h_2$  dominates  $h_1$  and is better for search

Typical search costs:

$$d=14$$
 IDS = 3,473,941 nodes 
$${\sf A}^*(h_1)=539 \ {\sf nodes}$$
 
$${\sf A}^*(h_2)=113 \ {\sf nodes}$$
 
$$d=24 \ {\sf IDS}\approx {\sf 54,000,000,000} \ {\sf nodes}$$
 
$${\sf A}^*(h_1)=39,135 \ {\sf nodes}$$
 
$${\sf A}^*(h_2)=1,641 \ {\sf nodes}$$

Given any admissible heuristics  $h_a$ ,  $h_b$ ,

$$h(n) = \max(h_a(n), h_b(n))$$

is also admissible and dominates  $h_a$ ,  $h_b$ 

### Relaxed problems

Admissible heuristics can be derived from the **exact** solution cost of a **relaxed** version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then  $h_1(n)$  gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then  $h_2(n)$  gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

#### Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h

incomplete and not always optimal

 $A^*$  search expands lowest g + h

- complete and optimal if h is admissible (i.e.,  $h \leq h^*$ )
- also optimally efficient
- space complexity is still a problem

(For comparison: Uniform-cost search expands lowest g

– this is equivalent to  $A^*$  with h=0)

Admissible heuristics can be derived from exact solutions of relaxed problems