
Uninformed search algorithms
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Tree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states

(a.k.a. expanding states)

function Tree-Search( problem) returns a solution, or failure

initialize the frontier using the initial state of problem

loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the corresponding solution

expand the chosen node and add the resulting nodes to the frontier

end
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Tree search example

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad
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Tree search example

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Note: Arad is one of the expanded nodes!
This corresponds to going to Sibiu and then returning to Arad.
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Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree

– includes the state, parent, children, depth, and the path cost g(x)
States do not have parents, children, depth, or path cost!
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The Expand function creates new nodes, filling in the various fields and
using the SuccessorFn of the problem to create the corresponding states.
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Implementation: general tree search

function Tree-Search( problem) returns a solution, or failure

frontier←{Make-Node(Initial-State[problem])}

loop do

if frontier is empty then return failure

node←Remove-Front(frontier)

if Goal-Test(problem,State[node]) return node

frontier← InsertAll(Expand(node,problem), frontier)

function Expand(node, problem) returns a set of nodes

successors← the empty set

for each action, result in Successor-Fn(problem,State[node]) do

s← a new Node

Parent-Node[s]← node; Action[s]← action; State[s]← result

Path-Cost[s]←Path-Cost[node] +

Step-Cost(State[node],action, result)

Depth[s]←Depth[node] + 1

add s to successors

return successors
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Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
optimality—does it always find a least-cost solution?
time complexity—number of nodes generated/expanded
space complexity—maximum number of nodes in memory

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be ∞)
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Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition

♦ Breadth-first search

♦ Uniform-cost search

♦ Depth-first search

♦ Depth-limited search

♦ Iterative deepening search
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Breadth-first search

Expand the shallowest unexpanded node

Implementation:
frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 10



Breadth-first search

Expand shallowest unexpanded node

Implementation:
frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G
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Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd),
i.e., exponential in d

Space?? O(bd) (keeps every node in memory)

Optimal?? Yes, if step cost = 1
Not optimal in general

Space is the big problem:
it can easily generate 1M nodes/second
so after 24hrs it has used 86,000GB
(and then it has only reached depth 9 in the search tree)
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Uniform-cost search

Expand the cheapest unexpanded node

Implementation:
frontier = priority queue ordered by path cost g(n)

Equivalent to breadth-first search, if all step costs are equal

Complete?? Yes, if step cost ≥ ǫ > 0

Time?? # of nodes with g(n) ≤ C∗, i.e., O(b⌈C
∗/ǫ⌉)

where C∗ is the cost of the optimal solution
and ǫ is the minimal step cost

Space?? Same as time

Optimal?? Yes—nodes are expanded in increasing order of g(n)
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Depth-first search

Expand the deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O
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Properties of depth-first search

Complete?? No: it fails in infinite-depth spaces
it also fails in finite spaces with loops
but if we modify the search to avoid repeated states
⇒ complete in finite spaces (even with loops)

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, it may be much faster than breadth-first

Space?? O(bm): i.e., linear space!

Optimal?? No
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Depth-limited search

Depth-first search with depth limit l, i.e., nodes at depth l have no successors

Recursive implementation:

function Depth-Limited-Search( problem, limit) returns soln/failure/cutoff

Recursive-DLS(Make-Node(Initial-State[problem]),problem, limit)

function Recursive-DLS(node,problem, limit) returns soln/failure/cutoff

if Goal-Test(problem,State[node]) then return node

else if limit = 0 then return cutoff

else

cutoff-occurred?← false

for each action in Actions(State[node],problem) do

child←Child-Node(problem, node, action)

result←Recursive-DLS(child,problem, limit – 1)

if result = cutoff then cutoff-occurred?← true

else if result 6= failure then return result

if cutoff-occurred? then return cutoff else return failure
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Iterative deepening search

Successive depth-limited searches, with higher and higher depth limits,
until a goal is found.

function Iterative-Deepening-Search( problem) returns solution/failure

for depth← 0 to ∞ do

result←Depth-Limited-Search( problem, depth)

if result 6= cutoff then return result

end

Note: This means that shallow nodes will be recalculated several times!
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Iterative deepening search l = 0

Limit = 0 A A
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Iterative deepening search l = 1
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Iterative deepening search l = 2
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Iterative deepening search l = 3

Limit = 3
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Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

Space?? O(bd)

Optimal?? Yes, if step cost = 1
it can be modified to explore a uniform-cost tree

Numerical comparison for b = 10 and d = 5:

N(BFS) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 = 111, 110

N(IDS) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450

Note: IDS recalculates shallow nodes several times,
but this doesn’t have a big effect compared to BFS!
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Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening

Complete? Yes Yes, if ǫ > 0 No Yes, if l ≥ d Yes
Time bd b⌈C

∗/ǫ⌉ bm bl bd

Space bd b⌈C
∗/ǫ⌉ bm bl bd

Optimal? Yes∗ Yes No No Yes∗
∗if all step costs are identical

b = the branching factor

d = the depth of the shallowest solution

m = the maximum depth of the tree

l = the depth limit

ǫ = the smallest step cost

C∗ = the cost of the optimal solution
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Repeated states

Failure to detect repeated states can turn a linear problem exponential!

A

B

C

D

A

BB

CCCC

Solution: Use graph search instead of tree search!
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Graph search

We augment the tree search algorithm with a set explored,
which remembers every expanded node

function Graph-Search( problem) returns a solution, or failure

frontier←{Make-Node(Initial-State[problem])}

explored←{}

loop do

if frontier is empty then return failure

node←Remove-Front(frontier)

if Goal-Test(problem,State[node]) then return node

add State[node] to explored

if State[node] is not in frontier ∪ explored then

frontier← InsertAll(Expand(node,problem), frontier)

end
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Summary

Variety of uninformed search strategies:
– breadth-first search
– uniform-cost search
– depth-first search
– depth-limited search
– iterative deepening search

Iterative deepening search uses only linear space
and not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search
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