
Introduction to Programming in

Haskell

Chalmers & GU

Emil Axelsson and John Hughes

(with thanks to Koen Lindström Claessen)

Programming

•Exciting subject at the heart of computing

•Never programmed?

–Learn to make the computer obey you!

•Programmed before?

–Lucky you! Your knowledge will help a lot...

–...as you learn a completely new way to program

•Everyone will learn a great deal from this

course!

Goal of the Course

•Start from the basics, after Datorintroduktion

•Learn to write small-to-medium sized
programs in Haskell

•Introduce basic concepts of computer science

The Flow

You prepare

in advance
I explain

in lecture

You learn

with exercises

You put to practice

with lab assignments

Tuesdays,Fridays

Mondays

Submit end of each week

Do not break the

flow!

Exercise Sessions

•Mondays

–Group rooms

•Come prepared

•Work on exercises together

•Discuss and get help from tutor

–Personal help

•Make sure you understand this week’s things
before you leave

Lab Assignments

•Work in pairs
–(Almost) no exceptions!

•Lab supervision
–Book a time in advance

–One time at a time!

•Start working on lab when you have understood the
matter

•Submit end of each week

•Feedback
–Return: The tutor has something to tell you; fix and submit
again

–OK: You are done

even this

week!

bring pen

and paper

Getting Help

•Weekly group sessions

–personal help to understand material

•Lab supervision

–specific questions about programming assignment

at hand

•Discussion forum

–general questions, worries, discussions

Assessment

•Written exam (4.5 credits)

–Consists of small programming problems to solve

on paper

–You need Haskell ”in your fingers”

•Course work (3 credits)

–Complete all labs successfully

A Risk

•7 weeks is a short time to learn programming

•So the course is fast paced

–Each week we learn a lot

–Catching up again is hard

•So do keep up!

–Read the lecture notes each week

–Make sure you can solve the problems

–Go to the weekly exercise sessions

–From the beginning

Course Homepage

•The course homepage will have ALL up-to-

date information relevant for the course

–Schedule

–Lab assignments

–Exercises

–Last-minute changes

–(etc.)

 http://www.cse.chalmers.se/edu/course/TDA555/

Or go via the student

portal

Software

Software = Programs + Data

Data
Data is any kind of storable information. Examples:

•Numbers

•Letters

•Email messages

•Songs on a CD

•Maps

•Video clips

•Mouse clicks

•Programs

Programs

Programs compute new data from old data.

Example: Starcraft II computes a sequence of screen images

and sounds from a sequence of mouse clicks.

Building Software Systems

A large system may contain many millions of lines of code.

Software systems are among the most complex artefacts ever
made.

Systems are built by combining existing components as far as
possible.

Volvo buys engines

from Mitsubishi.

Facebook buys video

player from Adobe

Programming Languages

Programs are written in programming languages.

There are hundreds of different programming languages, each

with their strengths and weaknesses.

A large system will often contain components in many

different languages.

Programming Languages

C

Haskell Java

ML

O’CaML

C++

C#

Prolog

Perl

Python

Ruby

PostScript

SQL

Erlang

PDF

bash

JavaScript

Lisp
Scheme

BASIC

csh

VHDL

Verilog

Lustre

Esterel

Mercury

Curry

which language

should we teach?

Programming Language Features

polymorphism

higher-order

functions
statically

typed

parameterized

types

overloading

type

classes
object

oriented

reflection

meta-

programming

compiler

virtual

machine

interpreter

pure

functions

lazy
high

performance

type

inference

dynamically

typed

immutable

datastructures

concurrency

distribution

real-time

Haskell unification

backtracking

Java

C

Teaching Programming

•Give you a broad basis

–Easy to learn more programming languages

–Easy to adapt to new programming languages

•Haskell is defining state-of-the-art in programming language

development

–Appreciate differences between languages

–Become a better programmer!

”Functional Programming”

•Functions are the basic building blocks of

programs

•Functions are used to compose these

building blocks into larger programs

•A (pure) function computes results from

arguments – consistently the same

Industrial Uses of Functional

Languages

Intel (microprocessor

verification)

Hewlett Packard (telecom event

correlation)

Ericsson (telecommunications)

Jeppesen (air-crew scheduling)

Facebook (chat engine)

Credit Suisse (finance)

Barclays Capital (finance)

Hafnium (automatic

transformation tools)

Shop.com (e-commerce)

Motorola (test generation)

Thompson (radar tracking)

Microsoft (F#)

Jasper (hardware verification)

And many more!

Computer Sweden,

2010

Keynotes at Developer

Conferences

• Eclipse Summit Europé 2009

– Taking Functional Programming

into the Mainstream

• YOW! 2011, Australia

– Escape From the Ivory Tower: The

Haskell Journey

• Qcon 2012, San Francisco

– Testing the Hard Stuff and Staying

Sane

John
Hughes

Simon
Peyton
Jones

Don
Syme

Why Haskell?
•Haskell is a very high-level language (many details taken care

of automatically).

•Haskell is expressive and concise (can achieve a lot with a

little effort).

•Haskell is good at handling complex data and combining

components.

•Haskell is not a particularly high-performance language

(prioritise programmer-time over computer-time).

Cases and Recursion

Example: The squaring function

•Example: a function to compute

-- sq x returns the square of x

sq :: Integer -> Integer

sq x = x * x

Evaluating Functions

•To evaluate sq 5:

–Use the definition—substitute 5 for x throughout

•sq 5 = 5 * 5

–Continue evaluating expressions

•sq 5 = 25

•Just like working out mathematics on paper

sq x = x * x

Example: Absolute Value

•Find the absolute value of a number

-- absolute x returns the absolute value of x

absolute :: Integer -> Integer

absolute x = undefined

Example: Absolute Value

•Find the absolute value of a number

•Two cases!

–If x is positive, result is x

–If x is negative, result is -x

-- absolute x returns the absolute value of x

absolute :: Integer -> Integer

absolute x | x > 0 = undefined

absolute x | x < 0 = undefined

Programs must often

choose between

alternatives

Think of the cases!

These are guards

Example: Absolute Value

•Find the absolute value of a number

•Two cases!

–If x is positive, result is x

–If x is negative, result is -x

-- absolute x returns the absolute value of x

absolute :: Integer -> Integer

absolute x | x > 0 = x

absolute x | x < 0 = -x

Fill in the result in

each case

Example: Absolute Value

•Find the absolute value of a number

•Correct the code

-- absolute x returns the absolute value of x

absolute :: Integer -> Integer

absolute x | x >= 0 = x

absolute x | x < 0 = -x

>= is greater than

or equal, ¸

Evaluating Guards

•Evaluate absolute (-5)

–We have two equations to use!

–Substitute

•absolute (-5) | -5 >= 0 = -5

•absolute (-5) | -5 < 0 = -(-5)

absolute x | x >= 0 = x

absolute x | x < 0 = -x

Evaluating Guards

•Evaluate absolute (-5)

–We have two equations to use!

–Evaluate the guards

•absolute (-5) | False = -5

•absolute (-5) | True = -(-5)

absolute x | x >= 0 = x

absolute x | x < 0 = -x

Discard this

equation

Keep this one

Evaluating Guards

•Evaluate absolute (-5)

–We have two equations to use!

–Erase the True guard

•absolute (-5) = -(-5)

absolute x | x >= 0 = x

absolute x | x < 0 = -x

Evaluating Guards

•Evaluate absolute (-5)

–We have two equations to use!

–Compute the result

•absolute (-5) = 5

absolute x | x >= 0 = x

absolute x | x < 0 = -x

Notation

•We can abbreviate repeated left hand sides

•Haskell also has if then else

absolute x | x >= 0 = x

absolute x | x < 0 = -x

absolute x | x >= 0 = x

 | x < 0 = -x

absolute x = if x >= 0 then x else -x

Example: Computing Powers

•Compute (without using built-in x^n)

Example: Computing Powers

•Compute (without using built-in x^n)

•Name the function

power

Example: Computing Powers

•Compute (without using built-in x^n)

•Name the inputs

power x n = undefined

Example: Computing Powers

•Compute (without using built-in x^n)

•Write a comment

-- power x n returns x to the power n

power x n = undefined

Example: Computing Powers

•Compute (without using built-in x^n)

•Write a type signature

-- power x n returns x to the power n

power :: Integer -> Integer -> Integer

power x n = undefined

How to Compute power?

•We cannot write

–power x n = x * … * x

n times

A Table of Powers

•Each row is x* the previous one

•Define power x n to compute the nth row

n power x n

0 1

1 x

2 x*x

3 x*x*x

A Definition?

•Testing:

Main> power 2 2

ERROR - stack overflow

power x n = x * power x (n-1)

Why?

A Definition?

•Testing:

–Main> power 2 2

–Program error: pattern match failure: power 2 0

power x n | n > 0 = x * power x (n-1)

A Definition?

•Testing:

–Main> power 2 2

–4

power x 0 = 1

power x n | n > 0 = x * power x (n-1)

First row

of the

table

The BASE CASE

Recursion

•First example of a recursive function

–Defined in terms of itself!

•Why does it work? Calculate:

–power 2 2 = 2 * power 2 1

–power 2 1 = 2 * power 2 0

–power 2 0 = 1

power x 0 = 1

power x n | n > 0 = x * power x (n-1)

Recursion

•First example of a recursive function

–Defined in terms of itself!

•Why does it work? Calculate:

–power 2 2 = 2 * power 2 1

–power 2 1 = 2 * 1

–power 2 0 = 1

power x 0 = 1

power x n | n > 0 = x * power x (n-1)

Recursion

•First example of a recursive function

–Defined in terms of itself!

•Why does it work? Calculate:

–power 2 2 = 2 * 2

–power 2 1 = 2 * 1

–power 2 0 = 1

power x 0 = 1

power x n | n > 0 = x * power x (n-1)

No circularity!

Recursion

•First example of a recursive function

–Defined in terms of itself!

•Why does it work? Calculate:

–power 2 2 = 2 * power 2 1

–power 2 1 = 2 * power 2 0

–power 2 0 = 1

power x 0 = 1

power x n | n > 0 = x * power x (n-1)

The STACK

Recursion

•Reduce a problem (e.g. power x n) to a

smaller problem of the same kind

•So that we eventually reach a ”smallest” base

case

•Solve base case separately

•Build up solutions from smaller solutions

Powerful problem solving strategy

in any programming language!

Replication

• Replicate a given word n times

repli :: Integer -> String -> String

repli ...

GHCi> repli 3 “apa”

“apaapaapa”

An Answer

repli :: Integer -> String -> String

repli 1 s = s

repli n s | n > 1 = s ++ repli (n-1) s

repli :: Integer -> String -> String

repli 0 s = “”

repli n s | n > 0 = s ++ repli (n-1) s

repli :: Integer -> String -> String

repli 1 s = s

repli n s | n > 1 = s ++ repli (n-1) s

make base case

as simple as

possible!

Counting the regions

•n lines. How many regions?
remove

one line ...

problem

is easier!

when do

we stop?

A Solution

•Don't forget a base case

regions :: Integer -> Integer

regions 1 = 2

regions n | n > 1 = regions (n-1) + n

A Better Solution

•Always pick the base case as simple as

possible!

regions :: Integer -> Integer

regions 0 = 1

regions n | n > 0 = regions (n-1) + n

Group

•Divide up a string into groups of length n

group :: ...

group n s = ...

LIVE CODING!!!

Types

•What are the types of repli and group?

repli :: Integer -> String -> String

group :: Integer -> String -> [String]

repli :: Integer -> [a] -> [a]

group :: Integer -> [a] -> [[a]]

How many ways are there to

choose k of n elements?

• e.g.

2 of 4?

6!

LIVE CODING!!!

There is no book!

If you want a book anyway, try:

The Craft of Functional Programming, by

Simon Thompson. Available at Cremona.

Course Web Pages

URL:

http://www.cse.chalmers.se/edu/course/TDA555/

Updated almost

daily!

•These slides

•Schedule

•Practical information

•Assignments

•Discussion board

