Introduction to Programming In
Haskell

Chalmers & GU

Emil Axelsson and John Hughes
(with thanks to Koen Lindstrom Claessen)

Programming

*EXcIting subject at the heart of computing

*Never programmed?

—|_earn to make the computer obey you!
*Programmed before?

—Lucky you! Your knowledge will help a lot...
—...as you learn a completely new way to program

Everyone will learn a great deal from this
course!

Goal of the Course

Start from the basics, after Datorintroduktion

L_earn to write small-to-medium sized
programs in Haskell

Introduce basic concepts of computer science

You prepare
In advance

The

N

fo not break thi
flow!
Flow

| explain
In lecture

/ Tuesdays,Fridays

You learn

With exercises |4

Mondays

You put to practice
with lab assignments

Submit end of each week

Exercise Sessions

*Mondays
—Group rooms

«Come prepared
*\Work on exercises together

Discuss and get help from tutor
—Personal help

*Make sure you understand this week’s things
before you leave

Lab Assignments

*Work In pairs
—(Almost) no exceptions!

L_ab supervision bring pen
—Book a time in advance and paper
—One time at a time!

«Start working on lab when you have understood the
matter

«Submit end of each week ﬁ even this]
«Feedback week!

—Return: The tutor has something to tell you; fix and submit
again
—OK: You are done

Getting Help

*\Weekly group sessions
—personal help to understand material

Lab supervision

—specific questions about programming assignment
at hand

Discussion forum
—general questions, worries, discussions

Assessment

*\Written exam (4.5 credits)

—Consists of small programming problems to solve
on paper

—You need Haskell ”’in your fingers”™

*Course work (3 credits)

—Complete all labs successfully

A RiIsk

'/ weeks Is a short time to learn programming

S0 the course Is fast paced

—Each week we learn a lot

—Catching up again is hard

S0 do keep up!

—Read the lecture notes each week
—Make sure you can solve the problems
—Go to the weekly exercise sessions
—From the beginning

Course Homepage

*The course homepage will have ALL up-to-
date information relevant for the course

—Schedule o

: Or go via the student
—Lab assignments [bortal j
—EXxercises
—Last-minute changes
—(etc.)

http://www.cse.chalmers.se/edu/course/TDA5S55/

Software

Software = Programs + Data

Data

Data is any kind of storable information. Examples:

*Numbers *Maps
o|_etters Video clips
Emalil messages *Mouse clicks

«Songs ona CD *Programs

Programs

Programs compute new data from old data.

Example: Starcraft | computes a sequence of screen images
and sounds from a sequence of mouse clicks.

Building Software Systems

A large system may contain many millions of lines of code.

Sofdtware systems are among the most complex artefacts ever
made.

Systems are built by combining existing components as far as
possible.

\olvo buys engines Facebook buys video

<>

from Mitsubishi. player from Adobe

Programming Languages
Programs are written in programming languages.

There are hundreds of different programming languages, each
with their strengths and weaknesses.

A large system will often contain components in many
different languages.

which language

PrOg ramm | ng Lang should we teach?

Lisp Scheme C BASIC
++
Haskell Java ¢
C#
ML Python JavaScript
csh
O'CaML Curry Per|
bash
Erlang Prolog Ruby
Lustre Mercury :
VHDL PostScript
Esterel

soL PDF

Verilog

Programming L anguage Features

dynamically pure

o typed / higher-order ~ functions
statically . type finctions
typed |
immutable real-time
polymorphism _ datastructures —
overloading ‘ concurrency
high -
parameterized performance distribution

types virtual

‘ | m
- machine
reflectlo
type _ |
- object compiler\, .
classes ented interpreter
oriente meta-
Haskell unification programming

backtracking C

Teaching Programming

*Glve you a broad basis
—Easy to learn more programming languages

—Easy to adapt to new programming languages

*Haskell is defining state-of-the-art in programming language
development

—Appreciate differences between languages
—Become a better programmer!

“Functional Programming”

*Functions are the basic building blocks of
programs

*Functions are used to compose these
building blocks into larger programs

A (pure) function computes results from
arguments — consistently the same

Industrial Uses of Functional

Languages
Intel (microprocessor Hafnium (automatic
verification) transformation tools)

Hewlett Packard (telecom event Shop.com (e-commerce)

correlation) Motorola (test generation)

Ericsson (telecommunications) Thompson (radar tracking)

Jeppesen (air-crew scheduling) Microsoft (F#)

Facebook (chat engine) Jasper (hardware verification)
Credit Suisse (finance)

Barclays Capital (finance) And many more!

&

=
e
.
e
-
-

Computer Sweden,

SPRAETUSHIY. O :

e \nicdsingen oll st fuahiio-
i ik Har) popularitet & a!
Se iaany ar oo » 3l B2 villEmprangse
vy matensadssioa berdhnimgr odh
garsilell problgmbinnirg wh ballad
sartidighet efler concurency ph
ngeisha

Det sosenimmida 2 viktigs fir
Lagens modernis datorer med flvra

e e

'.“ ‘ i

l'l
:
t

proe woserippen, soat | lbealfallet
L arheta aratidlls e

12 Svea Ehonoml, som Sgie s
4t koo lahanteniag MM:
tghomern, nyauls 7/ Tl

Vi e ont joupy oA ST tieaal
wiveckiare v s i over Wil P
| Jag hae tre o ru stychen Ko
it | gpAng ordensiizn 16 olAE per

2010

W -., =33 'u
rodan oo sstsnimgen pb To Do
har Son isogingen il
MANS STEREY, Sontelt [Cenneon
So. vt vt Anhiogare wv Banktios
nelle sprak | alhindaher och ¥

:

-Problemea med samndighet
blir ovpe ket enklare it s Wescan
att amalysers sty detunlagler

‘Wartic Bir det enkiare att W
neila spedk?

Keynotes at Developer
Conferences

 Eclipse Summit Europé 2009

— Taking Functional Programming
Into the Mainstream

« YOW! 2011, Australia

— Escape From the lvory Tower: The
Haskell Journey

* Qcon 2012, San Francisco

— Testing the Hard Stuff and Staying
Sane

Why Haskell?

*Haskell is a very high-level language (many details taken care
of automatically).

*Haskell is expressive and concise (can achieve a lot with a
little effort).

*Haskell is good at handling complex data and combining
components.

*Haskell is not a particularly high-performance language
(prioritise programmer-time over computer-time).

Cases and Recursion

Example: The squaring function

*Example: a function to compute 2

-- Sq X returns the square of x
sq :: Integer -> Integer
S X=X*X

Evaluating Functions

*To evaluate sq 5:

—Use the definition—substitute 5 for x throughout
SqO=95%*5

—Continue evaluating expressions

S 5 =25

-Just like working out mathematics on paper

S X=X*X

Example: Absolute Value

FInd the absolute value of a number

-- absolute x returns the absolute value of x
absolute :: Integer -> Integer
absolute x = undefined

Example: Absolute Value

Find the absolute value of a
Programs must often

e [\WO casesl choose between

: . : alternatives
—If X 1Is positive, result Is X

—If X IS negative, result Is -X

a
a

absolute x returns the absolute value of x
0solute :: Integer -> Integer faThlnk of the cases!

nsolute x | x>0 = unWThese are guards

a

nsolute x | x < 0 = undefined

Example: Absolute Value

FInd the absolute value of a number

* WO cases!
—If X 1Is positive, result Is X
—If X IS negative, result Is -X

a
a

absolute x returns the absolute value of x
0solute :: Integer -> Integer ﬁin in the result in

a

psolute X [x>0 =x \ each case

nsolute x | x <0 = -x

Example: Absolute Value

FInd the absolute value of a number
«Correct the code

-- absolute x returns the absolute value of x

a
a
a

0SSO
0SO

0SO

ute ::
ute X
ute X

nteger -> Integer ﬁz is greater than

X>=0 = x\ or equal, ,

X<0 =-X

Evaluating Guards

Evaluate absolute (-5)

—We have two equations to use!
—Substitute

absolute (-5) |-5>=0=-5
*absolute (-5) | -5<0=-(-5)

absolute x [x >=0 =X
absolute x [x <0 =-X

Evaluating Guards

Evaluate absolute (-5)

—We have two equations to use! _ _
—Evaluate the guards 2:D|scard th'Sj

equation
absolute (-5) | False = -5 J

*absolute (-5) | True = -(-5) {Keep this onej

absolute x [x >=0 =X
absolute x [x <0 =-X

Evaluating Guards

Evaluate absolute (-5)
—We have two equations to use!

—Erase the True guard
«absolute (-5) = -(-5)

absolute x [x >=0 =X
absolute x [x <0 =-X

Evaluating Guards

Evaluate absolute (-5)
—We have two equations to use!

—Compute the result
«absolute (-5) =5

absolute x [x >=0 =X
absolute x [x <0 =-X

Notation

*\We can abbreviate repeated left hand sides

absolute x | x >=0 =X
absolute x | x<0 =-x

absolute x | x>=0=x
| Xx<0 =-X

eHaskell also has If then else

absolute x = if x >= 0 then x else -x

Example: Computing Powers

«Compute " (without using built-in xn)

Example: Computing Powers

«Compute "™ (without using built-in x”n)
*Name the function

power

Example: Computing Powers

«Compute "™ (without using built-in x”n)
*Name the inputs

power X n = undefined

Example: Computing Powers

-Compute " (without using built-in x”*n)
*Write a comment

-- power X n returns x to the power n
power X n = undefined

Example: Computing Powers

«Compute "™ (without using built-in x”n)
*\Write a type signature

-- power X n returns X to the power n
power :: Integer -> Integer -> Integer
power X n = undefined

How to Compute power?

\We cannot write

—power xn=x* ., *|X
| |

n times

A Table of Powers

n power X n
0 1

1 X

2 X*X

3 XFX*X

Each row Is x the previous one
*Define power x n to compute the nth row

A Definition?

power x n = X * power x (n-1)

*Testing:
Main> power 2 2

ERROR - stack overflow ﬁ Why? j

A Definition?

power xn|n>0 =x*power x (n-1)

*Testing:
—Main> power 2 2
—Program error: pattern match failure: power 2 0

First row

A Definition? (of the
——— —_ table
powerx0=1

power Xxn | n>0=Xx*power x (n-1)

*Testing:
—Main> power 2 2
—4

ne BASE CASE

Recursion

First example of a recursive function
—Defined In terms of itself!

power x0 =1
power Xxn|n>0=Xx*power x (n-1)

*\WWhy does 1t work? Calculate:
—power 22 =2 *power 21
—power 21 =2 * power 20
—power20=1

Recursion

First example of a recursive function
—Defined In terms of itself!

powerx0=1
power xn|n>0=x*power x (n-1)

*\WWhy does 1t work? Calculate:
—power 22 =2 *power 21
—power21=2*1
—power20=1

Recursion

First example of a recursive function
—Defined in terms of itself!

powerx0=1
power xn|n>0=x*power x (n-1)

*\WWhy does 1t work? Calculate:
—power22=2%*2
—power21=2*1
—power20=1

Recursion

First example of a recursive function
—Defined in terms of itself!

powerx0=1
power xn|n>0=x*power x (n-1)

*\WWhy does 1t work? Calculate:

—power 22 =2 *power 21
—power 21 =2 *power 20 ~

—power20=1 /

™

Recursion

*Reduce a problem (e.g. power x n) to a
smaller problem of the same kind

*So that we eventually reach a ”smallest™ base
Ccase

*Solve base case separately
Build up solutions from smal

ful problem solving strategy
INn any programming language!

solutions

Replication

 Replicate a given word n times

repli :: Integer -> String -> String
repli ...

GHCi> repli 3 "apa”
“‘apaapaapa’

An Answer

rep
rep
rep

| .: Integer -> String -> String
i O S — (1%}
Ins|n>0=s++repli(n-1) s

make base case
as simple as
possible!

Counting the regions

remove
one line ...

problem

IS easier!

n lines. How many regions?

A Solution

Don't forget a base case

regions :: Integer -> Integer
regions 1 =2
regions n | n>1 =regions (n-1) + n

A Better Solution

*Always pick the base case as simple as
possible!

regions :: Integer -> Integer
regions O =1
regions n | n >0 =regions (n-1) + n

Group

Divide up a string into groups of length n

groupns=...

LIVE CODING!!!

Types

*\What are the types of repli and group?

repli :: Integer -> String -> String
group :: Integer -> String -> [String]

repli :: Integer -> [a] -> [a]
group :: Integer -> [a] -> [[a]]

How many ways are there to
choose k of n elements?

. e.0.

El
H N

H N

2 of 47

6!

LIVE CODING!!!

There 1s no book!

If you want a book anyway, try:

The Craft of Functional Programming, by
Simon Thompson. Available at Cremona.

Course Web Pages

Updated almost]
iV
URL - daily!

http://www.cse.chalmers.se/edu/course/TDAS5S55/

*These slides
*Schedule

*Practical information
«Assignments

eDiscussion board

