{_

This is a list of selected functions from the
standard Haskell modules: Prelude Data.List
Data.Maybe Data.Char Control.Monad

—— standard type classes

class Show a where
show :: a —> String

class Eq a where

(==), (/=)

a —> a —> Bool

class (Eq a) => Ord a where
(<)s (<=), (>=), (>) :: a => a => Bool
max, min t:a->a->a

class (Eq a, Show a) => Num a where

(F)r (7)) (%) it a->a->a
negate t: a —=> a
abs, signum t: a —=> a
fromInteger Integer -> a

class (Num a, Ord a) => Real a where
toRational a —> Rational

class (Real a, Enum a) => Integral a where
quot, rem a->a->a
div, mod iz a->a->a
toInteger a —> Integer

class (Num a) => Fractional a where
(/) iz a->a->a
fromRational :: Rational -> a

class (Fractional a) => Floating a where
exp, log, sqrt t: a —> a
sin, cos, tan t: a —> a

class (Real a, Fractional a) => RealFrac a where
truncate, round :: (Integral b) => a -> b
ceiling, floor (Integral b) => a => b

—— numerical functions

even, odd :: (Integral a) => a —> Bool
even n =n ‘rem’ 2 ==
odd = not . even

—— monadic functions

sequence :: Monad m => [m a] -> m [a]
sequence = foldr mcons (return [])
where mcons p g = do x <- p
Xs <—- g

return (x:xs)

sequence_ :: Monad m => [m a] -> m ()
sequence_ xs = do sequence xs
return ()

1iftM :: (Monad m) => (al -> r) -=>m al > m r
1iftM £ ml = do x1 <- ml
return (f x1)

—— functions on functions

id :: a —> a

id x = x

const ::a —>b —->a

const x _ = X

(.) t: (b —>c) > (a —>Db) > a —>c
f . g =\ x => f (g x)

flip 22 (a->b ->c) >b->a->c
flip £ x vy =fyx

($) t: (a —=>b) -=>a ->b

f$ x = f x

—— functions on Bools

data Bool = False | True

(&&), (1) :: Bool —> Bool —> Bool
True && X = X

False && _ = False

True _ = True

False b4 = x

not :: Bool —-> Bool

not True = False

not False = True

—— functions on Maybe

data Maybe a = Nothing | Just a

isJust :: Maybe a —> Bool
isJust (Just a) = True
isJust Nothing = False

isNothing :: Maybe a —> Bool
isNothing = not . isJust
fromJust :

: Maybe a —> a
a

fromJust (Just a)

: Maybe a -> [a]
[1
[a]

maybeToList
maybeToList Nothing
maybeToList (Just a)

listToMaybe :: [a] —> Maybe a
listToMaybe [] = Nothing
listToMaybe (a:_) = Just a
catMaybes

:: [Maybe a] -> [a]

catMaybes 1s [x | Just x <- 1s]

—— functions on pairs

fst :: (a,b) —> a
fst (x,y) = x
snd :: (a,b) > b
snd (x,y) =y

: (a,b) => (b,a)
(b,a)

swap
swap (a,b)

curry :: ((a, b) > c) —>a > b —>
curry f x y = f (x, v)
uncurry :: (a—>b —->c) —> ((a, b) > ¢

uncurry f p = f (fst p) (snd p)

—— functions on lists

map :: (a —> b) —> [a] —> [b]
map £ xs = [£ x | x <- x5]

(++) :: [a] => [a] => [a]
xs ++ ys = foldr (:) ys xs

filter :: (a —> Bool) —> [a] —> [a]
filter p xs = [x | x <- X8, p X |

concat :: [[a]] —> [a]
concat xss = foldr (++) [] xss

concatMap :: (a —> [b]) —-> [a] —> [b]
concatMap f = concat . map f

head, last :: [a] —> a
head (x:_) = x

last [x] =X

last (_z:xs) = last xs
tail, init :: [a] —> [a]
tail (_:xs) = XS

init [x]
init (x:xs)

[1

X : init xs

null :: [a] —> Bool

null [] = True

null (_:_) = False

length :: [a] —-> Int

length = foldr (const (1+)) 0

(@D t: [a] => Int -> a

(xz_) 110 = x

(_:xs) !!' n =xs !! (n-1)

foldr :: (a ->b ->b) ->b —> [a] => b
foldr £ z [] = z

foldr £ z (x:xs) = f x (foldr f z xs)

foldl :: (@ ->b —->a) —>a->[b] ->a
foldl £ z [] = z

foldl £ z (x:xs) = foldl £ (f z x) xs

iterate :: (a -> a) —> a —> [a]

iterate f x x : iterate f (f x)

repeat :: a —> [a]
repeat x = xs where xXs = x:xs
replicate :: Int —> a —> [a]

replicate n x take n (repeat x)

cycle

[a] —> [a]

cycle [] =
cycle xs =
tails 22
tails =1
take, drop

take n _ | n <=
take _ []

take n (xX:xs)

drop n xs | n <=
drop _ []

drop n (_:xs)
splitAt

splitAt n xs

takewhile, dropWhile
takeWhile p []
takeWhile p (x:xs)
p x
otherw
dropWhile p []
dropWhile p xs@(x:xs
p X
otherw
span :: (a —> Bool)
span p as = (takeWhi

lines, words]

—— lines "apa\nbepal
__ == ["apa", "bepa
—-— words "apa bepa)
—— == ["apa", "bepa

unlines, unwords ::

error "Prelude.cycle: empty list"
Xs' where xs’' = Xs ++ Xs'

[a] —> [[a]]
terate tail

t -> [a] -> [a]

o
LI [[IS

In
[1
[1
X : take (n-1) xs
Xs

[1
drop (n-1) xs

: Int -> [a] —-> ([a],[a])
(take n xs, drop n xs)

:: (a —> Bool) —> [a] —-> [a]
= Il

x : takeWhile p xs
[1

[1

ise

")

ise

dropWhile p xs’
XS

-> [a] —> ([a], [a])
le p as, dropWhile p as)

String —> [String]
ncepa\n"

" icepa”]

n cepa”

", "cepa"]

[String] —-> String

—— unlines ["apa", "bepa", "cepa”]
- == "apa\nbepa\ncepa"

—-— unwords ["apa", "bepa", "cepa"]
- == "apa bepa cepa”

reverse
reverse

and, or
and
or

any, all

any p
all p

elem, notElem
elem x
notElem x

lookup :: (Eq a

lookup key [] =

lookup key ((X,Y):xy
key == x
otherwise

sum, product sz

[a] —> [a]
foldl (flip (:)) [1

[Bool] —> Bool
foldr (&&) True
foldr (||) False

(a —> Bool) —-> [a] —> Bool
or . map p
and . map p

(Eq a) => a —> [a] —> Bool

any (== X)
all (/= x)
) =>a —> [(a,b)] —> Maybe b

Nothing

s)

Just y

lookup key xys

(Num a) => [a] —> a

sum = foldl (+) O

product = foldl (*) 1

maximum, minimum :: (Ord a) => [a] —> a
maximum [] = error "Prelude.maximum: empty list"
maximum (x:xs) = foldl max x xs

minimum [] = error "Prelude.minimum: empty list"
minimum (x:xs) = foldl min x xs

zip :: [a] => [b] => [(a,b)]

zip = zipWith (,)

zipWith (a—>b->c) —> [a]->[b]->[c]

zipWith z (a:as) (b:bs)
= z ab : zipWith z as bs

zipWith _

unzip :: [(a,b)] —> ([a],[Db])
unzip =
foldr (\(a,b) ~(as,bs) —> (a:as,b:bs)) ([1,[])

nub :: Eq a => [a] —> [a]
nub [] =11
nub (x:xs) =

x:nub [y | y<-xs, x /=y 1]

delete :: EQq a => a —> [a] —> [a]
delete y [1] =11
delete y (x:xs) =

if x == y then xs else x : delete y xs
(\\) :: Eq a => [a] —> [a] —> [a]
(\\) = foldl (flip delete)
union :: EQ a => [a] —> [a] —> [a]

1]
el
1]
+
+

union xXs ys (ys \\ xs)

intersect
intersect xs ys

: Eq a => [a] —> [a] —> [a]
| x <= xs, x ‘elem’ ys]

]
b

intersperse :: a —> [a] —-> [a]
-—- intersperse 0 [1,2,3,4] == [1,0,2,0,3,0,4]
transpose :: [[a]] —> [[a]]

—— transpose [[1,2,3],[4,5,6]]
- == [[1,4],[2,5],[3,6]]

partition :: (a —> Bool) -> [a] —-> ([a],[a])
partition p xs =

(filter p xs, filter (not p) xs)
group :: EQ a => [a] —=> [[a]]
group = groupBy (==

groupBy :: (a —> a —> Bool) —> [a] —> [[a]]
groupBy _ [] = Il
groupBy eq (X:xXs) = (X:ys) : groupBy eq zs

where (ys,zs) = span (eq X) Xs

isPrefixOf :: Eq a => [a] —-> [a] —> Bool
isPrefixOf [] _ = True
isPrefixOf _ [1 = False
isPrefixOf (x:xs) (y:ys) = X ==y

&& isPrefixOf xs ys
isSuffixOf :: Eq a => [a] —> [a] —> Bool

isSuffixOf x y = reverse x ‘isPrefixOf’ reverse

sort :: (Ord a) => [a] -> [a]
sort foldr insert []

insert

insert x []

insert x (y:xs)
if x <= y then x:y:xs else y:insert x xs

:[(?rd a) =>a -> [a] —> [a]
X

—— functions on Char
type String = [Char]
toUpper, toLower :: Char —-> Char

—— toUpper ‘a’ 0%
-— toLower ‘Z’' 'z’

digitToInt :: Char -> Int

--"digitToInt '8’ == 8
intToDigit :: Int —-> Char
—— intToDigit 3 == ‘37

ord :: Char —> Int
chr :: Int -> Char

—— Signatures of some useful functions
—— from Test.QuickCheck

arbitrary :: Arbitrary a => Gen a
—— the generator for values of a type
—— in class Arbitrary, used by quickCheck

choose :: Random a => (a, a) —> Gen a
—— Generates a random element in the given
—— inclusive range.

oneof :: [Gen a] —-> Gen a
—— Randomly uses one of the given generators

frequency :: [(Int, Gen a)] —> Gen a
—— Chooses from list of generators with weighte
—— random distribution.

elements :: [a] —-> Gen a
—— Generates one of the given values.

listOf :: Gen a —> Gen [a]
—— Generates a list of random length.

vectorOf :: Int -> Gen a —> Gen [a]
—— Generates a list of the given length.

sized :: (Int —-> Gen a) —> Gen a
—— construct generators that depend on the size
meter.

