CHALMERS TEKNISKA HOGSKOLA October 25th, 2003
Datavetenskap Functional programming
Dennis Bjorklund INN040/TDA450

Exam
Functional Programming

Saturday, October 25th, 2003, 8.45 - 12.45.
Examiner: Dennis Bjorklund, telephone office: 772 5402, cell: 073 636 51 79.

Permitted aids:
English-Swedish or English-other language dictionary.

Begin each question on a new sheet. Write your personal number on every
sheet.

You may lose marks for unnecessarily long, complicated, or unstructured
solutions.

Full marks are awarded for solutions which are elegant, efficient, and cor-
rect.

You are free to use any Haskell standard functions, including those whose
definitions are attached, unless the question specifically forbids you to do
s0.

You may use the solution of an earlier part of a question to help solve a
later part, even if you did not succeed in solving the earlier part.

The exam consists of 5 questions, worth 9, 4, 16, 12, and 19 points. For
a Chalmers students the grade limits are: 3: 24p, 4: 36p, 5: 48p. For a
Gothenburg University student they are: G: 28p, VG: 48p.

1. Give the most general type for each of the following functions:

(a) fa (a,b) = a
(b) given the definition

data Either a b = Left a | Right b

give the type for

fb (Left a) = a
fb (Right b) = b
(c) fc [1 c =1l
fc (x:x8) ¢ = (c,x) :
(d) £4 00 gz=2z2
fd (x:xs) g z =
(e) fe x [] = False
fe x (y:ys) =

2. Evaluate the following expression by hand.

final answer

(a) Given:
£t =0
f[x] =1

f (x:y:xs) =y + £ xs
Evaluate:

f [1,2,3,4,5]

fc xs ¢

g x (fd xs g z)

x ==y || fe x ys

(b) Given:
g [rs = rs
g ((a,b):xs) rs = gxs (a : b :

Evaluate:

gl (1,2), 3,411

You only need to show the

rs)

(2 p)

3. Given the definition:

data Expr

Const Int
Plus Expr Expr
Mult Expr Expr

that is used to represent arithmetic expressions in haskell.

(a)

(b)

Write the expression
1+2)%(3+4)

as a value in the datatype Expr
Write a function with the following name and type
eval :: Expr -> Int

that computes an integer value by evaluating the expression. For the
example above we would get 21 as a result.

We want to add variables to the expressions. Our variables are de-
scribed by the type:

type VarId = (String,Int)

That is, a variable consists of a name and a number. For example
the variable x5 would be represented as ("x",2). Rewrite the type
Expr to include variables.

An environment is a data structure that associates values with vari-
ables. It’s used to lookup a variable and get the associated value.

We model environments using the following type:
type Env = VarId -> Maybe Int

The datatype Maybe is defined as:

data Maybe a = Just a | Nothing

We use Nothing to handle the case where you try to lookup a variable
that is not in the environment.

Define
emptyEnv :: Env

that is an environment where no variables at all are associated with
values. Next, define a function to extend a given environment with
a new association of a variable and a value:

extendEnv :: Env -> VarId -> Int -> Env
This function works so that:

extendEnv env var i

(3 p)

returns an environment that is the same as env except that it also
associates the integer i with the variable var.

Using the functions in part 3d write an expression that is an environ-
ment where z; is associated with the value 13 and z3 is associated
with the value 42.

You should see the enviroments as an abstract datatype and only use
the functions defined for it.

Define a function
lookupEnv :: Env -> VarId -> Maybe Int

that given an environment and a variable produces a value associated
with the variable (if the variable is in the environment), We use the
Maybe type to be able to either return an integer value or an error
value.

Using the new datatype in part 3c and the environments above, define
a new evaluation function:

eval :: Env -> Expr -> Maybe Int
that makes use of the new expression type in part 3¢ and the envi-

roments we defined above.

Notice that we use the Maybe type here too to handle errors, in this
case when you have a formula that contains variables that are not in
the environment.

As before, you should see the enviroment as an abstract datatype
and only use the functions defined for it.

(4 p)

(1p)

4. We say that a string xs is a subword of another string ys if one can obtain
xs by removing a number of characters from ys. So for example "so" is a
subword of "subword" and "apa" is a subword of "apparat". We do not
restrict ourselves to strings containing letters, so for example "j u" is a
subword of "hej du".

(a)

Define a function

subWords :: String -> [String]

which gives as its result the list of all subwords of its argument. For
example:

? subWords "apa"

[" " , Hall , lIPH , "Pall , Ilall , llaall , Ilapll , |Iapa||]

You need not worry about producing the subwords in the same order
as they are given here.

Define a function

isSubWord :: String -> String -> Bool

such that isSubWord xs ys tests whether xs is a subword of ys.
This can be done using the definition

isSubWord xs ys = elem xs (subWords ys)

but this is much too inefficient — the number of subwords of a string
of length n is 2". Give a more efficient definition of isSubWord.

(6 p)

(6 p)

5. A scieintfic study made at a unsrievity in England has shown that if the
first two and the last two letters in every word are plcaed corrcetly, then
it does not matter in what order the other letetrs in the word come. The
text is rebdaale even if the rest is in radnom order. This is beacuse people
don’t read each single letter but one word at a time.

If you can’t read the paragraph above the full text is in this footnote!.

We will write functions to randomize text like that.

(a) The first part is to write a function that works on a single word.
At first one might think that we should write a function of type
String -> String, but we can not. Functions in haskell are pure,
which means that when called several times with the same input
they produce the same output. For that reason, we can not write a
function with that type that randomizes the middle part of the word.
Instead we will write a function that also takes a list of random
numbers as input, and as output gives the result string and the list
of random numbers that is did not consume:

Define the function

randomizeWord :: [Int] -> String -> ([Int], String)

Hint! To reorder the characters in a string one can pair each character
¢ with a random number r as (r,c) and then simply sort the result (it
works since tuples are sorted in a lexicographic order). (8 p)

(b) Using the function above we shall now write a function that works
on a full sentence. Our function has the following type:

randomizeSentence :: [Int] -> String -> ([Int],String)

This function works just as the function randomizeWord above, ex-
cept that the strings now are complete sentences. The integer lists
are just as above the lists of random numbers.

The input sentence will consist of only simple letters and spaces, you
do not need to worry about other characters, like question marks or
similar.

For example, given that we have an infinite list of random numbers,
randList we can call the function as follows:

snd (randomizeSentence randList
"A scientific study made at a university in England")

and as result get

"A scieintfic study made at a unsrievity in England"

(7 p)

LA scientific study made at a university in England has shown that if the first two and the
last two letters in every word are placed correctly, then it does not matter in what order the
other letters in the word come. The text is readable even if the rest is in random order. This
is because people don’t read each single letter, but one word at a time.

(c) Write a small main program that works like this when compiled and

run:

bash> ./randomize

Enter the string to randomize: sweden europe
swdeen euorpe

Enter the string to randomize: A scientific study
A scetifniic study

You can use the following definition to generate an infinite list of
random numbers

gen :: I0 [Int]

Make sure you use gen only once during an execution of your pro-
gram. Once you have the infinite list of random numbers, you use
that list to pick from, over and over again.

(4 p)

