
Göteborgs Universitet och Chalmers Tekniska Högskola December 11, 2007
Datavetenskap TDA 450 / DIT 140

Exam in Functional Programming
TDA450/DIT140

Friday 19 January 2007, 8.30 – 12.30.
Examiner: Bengt Nordström, phone 1033 or 0730-79 42 89
Permitted aids: English-Swedish or English-other language dictionary.

You are free to use any Haskell standard functions, including the at-
tached ones, unless the question specifically forbids you. You may use the
solution of an earlier part of a question to solve a later part, even if you
did not solve the earlier part. You may lose marks for complicated solu-
tions. Your code should be written in such a way that it is quickly obvious
to the reader what the code does and that it is correct. This means that
you should strive for the right balance between conciseness and clarity. If
any part of your code is not easy to understand, it should be commented in
an appropriate way. Note that superfluous comments make the code more
difficult to read.

This written exam is worth up to 180 points. It is possible to count up
to 20 points for assignments handed in during the fall term of 2006. We
have the following limits for different grades: Chalmers students: 3 = 80
pts, 4 = 100 pts, 5 = 120 pts. University students: G = 100 pts, VG = 150
pts.

The exam will be shown on Wednesday 24 January at 11.00 – 11.15 in
Bengt’s office. Solutions to the exam will be available from the homepage
of the course.

1. Consider the definition of the data type of binary trees:

data Tree a = Tree a (Tree a) (Tree a) | Leaf

In a tree of the form Tree a t1 t2, we will call a the root of the tree
and t1 and t2 the left and right subtree, respectively. We will say that
the tree is a leaf when it has the form Leaf.

Define the function (10)

depth :: Tree a -> Integer

1



which computes the maximum depth of a tree. The depth of a leaf is
defined to be 0.

2. A binary tree is ordered if it is a leaf or if its subtrees are ordered and
the values in its left subtree holds only values which are less than the
root and the right subtree holds only values which are greater or equal
than the root. Write the functions (15)

minimal :: (Tree a) -> a
maximal :: (Tree a) -> a

which computes the minimal and maximal value of its argument, which
is an ordered tree. You can assume that the argument is not a leaf.
Notice that the types of the functions are not :

minimal :: Ord a => (Tree a) -> a
maximal :: Ord a => (Tree a) -> a

3. Write a function (20)

isordered :: Ord a => (Tree a) -> Bool

which checks if its argument is an ordered tree.

4. An inorder traversal of a tree is a traversal which first traverses the
left subtree, then the root and finally the right subtree.

Write a function (10)

inorder :: (Tree a) -> [a]

which computes the inorder traversal of its input.

5. Write a function (20)

insert :: Ord a => a -> (Tree a) -> Tree a

which inserts the element a into the tree t, i.e. insert a t is an
ordered tree containing all values in t and a.

6. Write a function (10)

list2tree :: Ord a => [a] -> Tree a

2



which converts a list to an ordered tree by inserting (using the function
insert above) all elements of the list into a tree.

7. Notice that the function above is almost a sorting algorithm, it takes
a list and produces an ordered tree. Use this function to define (15)

sort :: Ord a => [a] -> [a]

which sorts its input.

8. Define the function (20)

merge :: Ord a => [a] -> [a] -> [a]

which merges two ordered lists, i.e. merge as bs is an ordered per-
mutation of as ++ bs.

9. Define now a function (15)

merges :: Ord a => [[a]] -> [a]

which merges (not a pair of lists but) a list of lists such that the
output is ordered and contains all elements of its input lists. You can
for instance define it such that merges [as, bs, ..., us, vs] is
equal to (merge as (merge bs ( ... (merge us vs)...)))

10. Define now a function (10)

splitlist :: [a] -> [[a]]

which splits a list of values into a list of elements, each element be-
ing a singleton list of one of those values. For instance, the value of
splitlist [1, 3, 4] should be [[1], [3], [4]].

11. Using the two functions merges and splitlist define now another
sorting function (15)

mergesort :: Ord a => [a] - [a]

12. Explain the difference between an overloaded function and a polymor-
phic function! Give examples (you can refer to earlier examples in this (20)
exam).

Good Luck!
Bengt
PS The next pages contains a list of function definitions.

3



-- Numerical functions: ---------------------------------------

(^) :: (Num a, Integral b) => a -> b -> a

x ^ 0 = 1

x ^ n|n > 0 = x * x^(n-1)

|True = error "Prelude.^: negative exponent"

gcd :: Integral a => a -> a -> a

gcd 0 0 = error "Prelude.gcd: gcd 0 0 is undefined"

gcd x y = gcd’ (abs x) (abs y)

where gcd’ x 0 = x

gcd’ x y = gcd’ y (x ‘mod‘ y)

sum, product :: Num a => [a] -> a

sum = foldr (+) 0

product = foldr (*) 1

-- Char functions:---------------------------------------------

isAscii c = fromEnum c < 128

isControl c = c < ’ ’ || c == ’\DEL’

isPrint c = c >= ’ ’ && c <= ’ ~’

isSpace c = c == ’ ’ || c == ’\t’ || c == ’\n’ ||

c == ’\r’ || c == ’\f’ || c == ’\v’

isUpper c = c >= ’A’ && c <= ’Z’

isLower c = c >= ’a’ && c <= ’z’

isAlpha c = isUpper c || isLower c

isDigit c = c >= ’0’ && c <= ’9’

isAlphanum c = isAlpha c || isDigit c

toUpper, toLower :: Char -> Char

toUpper c | isLower c

= toEnum (fromEnum c - fromEnum ’a’ + fromEnum ’A’)

| otherwise = c

toLower c | isUpper c

= toEnum (fromEnum c - fromEnum ’A’ + fromEnum ’a’)

| otherwise = c

ord :: Char -> Int

ord = fromEnum

chr :: Int -> Char

chr = toEnum

-- List functions: -----------------------------------------------

null :: [a] -> Bool

null [] = True

null (_:_) = False

head :: [a] -> a

head (x:_) = x

tail :: [a] -> [a]

tail (_:xs) = xs

last :: [a] -> a

last [x] = x

last (_:xs) = last xs

init :: [a] -> [a]

4



init [x] = []

init (x:xs) = x : init xs

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

concat :: [[a]] -> [a]

concat = foldr (++) []

length :: [a] -> Int

length [] = 0

length (_:xs) = 1 + length xs

reverse :: [a] -> [a]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

elem :: Eq a => a -> [a] -> Bool

elem x [] = False

elem x (y:ys) = x == y || elem x ys

take, drop :: Int -> [a] -> [a]

take 0 _ = []

take _ [] = []

take n (x:xs) | n>0 = x : take (n-1) xs

take _ _ = error "PreludeList.take: negative argument"

drop 0 xs = xs

drop _ [] = []

drop n (_:xs) | n>0 = drop (n-1) xs

drop _ _ = error "PreludeList.drop: negative argument"

replicate :: Int -> a -> [a]

replicate 0 x = []

replicate n x | n>0 = x : replicate (n-1) x

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f e [] = e

foldr f e (x:xs) = f x (foldr f e xs)

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

zip :: [a] -> [b] -> [(a,b)]

zip (a:as) (b:bs) = (a,b):zip as bs

zip _ _ = []

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith z (a:as) (b:bs) = z a b : zipWith z as bs

zipWith _ _ _ = []

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x:filter p xs

| otherwise = filter p xs

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile p [] = []

takeWhile p (x:xs)

5



| p x = x : takeWhile p xs

| otherwise = []

dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p [] = []

dropWhile p (x:xs)

| p x = dropWhile p xs

| otherwise = x:xs

span, break :: (a -> Bool) -> [a] -> ([a],[a])

span p [] = ([],[])

span p xs@(x:xs’)

| p x = (x:ys,zs)

| otherwise = ([],xs)

where (ys,zs) = span p xs’

break p = span (not . p)

-- lines breaks a string up into a list of strings at newline characters.

-- The resulting strings do not contain newlines. Similary, words

-- breaks a string up into a list of words, which were delimited by

-- white space. unlines and unwords are the inverse operations.

-- unlines joins lines with terminating newlines, and unwords joins

-- words with separating spaces.

lines :: String -> [String]

lines "" = []

lines s = let (l, s’) = break (== ’\n’) s

in l : case s’ of

[] -> []

(_:s’’) -> lines s’’

words :: String -> [String]

words s = case dropWhile isSpace s of

"" -> []

s’ -> w : words s’’

where (w, s’’) = break isSpace s’

unlines :: [String] -> String

unlines = concatMap (++ "\n")

unwords :: [String] -> String

unwords [] = ""

unwords ws = foldr1 (\w s -> w ++ ’ ’:s) ws

until :: (a -> Bool) -> (a -> a) -> a -> a

until p f x = if p x then x else until p f (f x)

unzip :: [(a,b)] -> ([a],[b])

unzip [] = ([],[])

unzip ((a,b):xs) = let (as,bs) = unzip xs

in (a:as,b:bs)

nub :: (Eq a) => [a] -> [a]

nub [] = []

nub (x:xs) = x : [ y | y <- xs, x /= y ]

sort :: (Ord a) => [a] -> [a]

sort [] = []

sort (x:xs) = sort smaller ++ [x] ++ sort bigger

where

6



(smaller, bigger) = partition (< x) xs

and, or :: [Bool] -> Bool

and = foldr (&&) True

or = foldr (||) False

any, all :: (a -> Bool) -> [a] -> Bool

any p = or . map p

all p = and . map p

intersect :: Eq a => [a] -> [a] -> [a]

intersect = intersectBy (==)

intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]

intersectBy eq xs ys = [x | x <- xs, any (eq x) ys]

-- Standard combinators: ----------------------------------------------------

flip :: (a -> b -> c) -> b -> a -> c

flip f x y = f y x

(.) :: (b -> c) -> (a -> b) -> a -> c

(f . g) x = f (g x)

fst :: (a,b) -> a

fst (x,_) = x

snd :: (a,b) -> b

snd (_,y) = y

curry :: ((a,b) -> c) -> (a -> b -> c)

curry f x y = f (x,y)

uncurry :: (a -> b -> c) -> ((a,b) -> c)

uncurry f p = f (fst p) (snd p)

id :: a -> a

id x = x

const :: a -> b -> a

const k _ = k

error :: String -> a -- primitive function, no definiton here

7


