
Göteborgs Universitet och Chalmers Tekniska Högskola December 11, 2007
Datavetenskap TDA 450 / DIT 140

Exam in Functional Programming
TDA450/DIT140

Tuesday 24 October 2006, 8.30 – 12.30.
Examiner: Bengt Nordström, phone 1033 or 0730-79 42 89
Permitted aids: English-Swedish or English-other language dictionary.

You are free to use any Haskell standard functions, including the at-
tached ones, unless the question specifically forbids you. You may use the
solution of an earlier part of a question to solve a later part, even if you
did not solve the earlier part. You may lose marks for complicated solu-
tions. Your code should be written in such a way that it is quickly obvious
to the reader what the code does and that it is correct. This means that
you should strive for the right balance between conciseness and clarity. If
any part of your code is not easy to understand, it should be commented in
an appropriate way. Note that superfluous comments make the code more
difficult to read.

This written exam is worth up to 180 points. It is possible to count up to
20 points for assignments handed in during this fall. We have the following
limits for different grades: Chalmers students: 3 = 80 pts, 4 = 100 pts, 5 =
120 pts. University students: G = 100 pts, VG = 150 pts.

The exam will be shown on Monday 6 November at 15.30 in a location
announced on the homepage of the course. Solutions to the exam will also
be available from the homepage.

1. Consider the following data type for binary numbers:

data Bin = Nil | O Bin | I Bin deriving (Show, Eq)

The binary number 101 stands for the digital number 5, and 111 stands
for 7. In our representation, the binary number will start with its least
significant digit and the initial digit will always be removed (since all
leading 0s are inignificant, all binary numbers can be considered to
start with 1).

For instance, the decimal number 5 is the binary number 101, which is
represented by I (O Nil). The binary number 100011 is represented
by I (I (O (O (O Nil))))

1

So, we convert a binary number to our representation by taking away
the first 1 and then reversing it and putting a Nil to the end.

The function which converts a binary number to an Integer is hence:

fromBin :: Bin -> Integer
fromBin Nil = 1
fromBin (O x) = 2 * (fromBin x)
fromBin (I x) = 2 * (fromBin x) + 1

(a) Define the function (10)

toBin :: Integer -> Bin

which converts an integer to a binary number, i.e. fromBin (toBin n)
should compute to the value of n, for positive n.

(b) Define the function (20)

foldBin :: (t -> t) -> (t -> t) -> t -> Bin -> t

which should work for binary numbers in the same way as the
function foldr works for lists. The first argument is a function
which should be applied in the case the binary number starts
with O and the second argument should be applied in the case
the binary number starts with I. ou can look up the definition of
foldr in the enclosed prelude, it is:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f e [] = e
foldr f e (x:xs) = f x (foldr f e xs)

First, just to remind you about foldr: The intuition is that
foldr f a es will - in the argument es - replace all cons-

operations with f and the nil with a, such as:

foldr f s a1:(a2:(a3:nil)) =
foldr f s (cons a1 (cons a2 (cons a3 nil))) =

(f a1 (f a2 (f a3 s)))

So our new function foldBin should work so that foldBin f g a b
will in the argument b replace all occurrences of the constructor
O by the function f, all occurrences of the constructor I by the
function g, and the constructor Nil by the argument a.

2

foldBin f g a Nil = a
foldBin f g a (O b) = f (foldBin f g a b)
foldBin f g a (I b) = g (foldBin f g a b)

An example how to use it:

fromBin2 :: Bin -> Integer
-- To convert a binary number to an integer replace all 0s with the
-- doubling operation and all 1s with the operation which doubles the
-- number and adds one, and replace the final Nil with 1, so for
-- instance Nil = 1, O Nil = 2*1, I (O Nil) = 2*(2*1) +1
fromBin2 x = foldBin (\x->2*x) (\x->2*x+1) 1 x

(c) Define the function (20)

reversBin :: Bin -> Bin

which reverses the digits of its input. So

*Main> reversBin (I (O (I (I Nil))))
I (I (O (I Nil)))

(d) If we use the definition of the data type Bin above, the Haskell
interpreter will respond like this:

*Main> toBin 8
O (O (O Nil))

Instead, we would like to show binary numbers in the way we are
used to:

*Main> toBin 8
IOOO

Show how the code must be changed so that all binary numbers
are shown in the usual way. Explain your changes. irst, in the (20)
definition of the data type:

data Bin = Nil | O Bin | I Bin deriving (Show, Eq)

we have to change it to

data Bin = Nil | O Bin | I Bin deriving (Eq)

so that we do not use the show-function which is automatically
generated. Then we have to redefine the overloaded show- func-
tion:

3

instance Show (Bin) where
show = ppBin

ppBin :: Bin -> String
-- We insert the leading I and then replace all occurrences of the
-- constructor O with the character 0 and all occurrences of the
-- constructor I with the character 1 in the reverted binary number.
ppBin x = "I" ++ foldBin (’O’:)

(’I’:)
[]
(revertBin x)

4

2. Consider now the definition of the data type of binary trees:

data Tree a = Tree a (Tree a) (Tree a) | Leaf a

(a) Define the function (10)

depth :: Tree a -> Integer

which computes the maximum depth of a tree. The depth of a
leaf is defined to be 0.

(b) Define the infinite tree (5)

nats :: Tree Integer

which has 1 as the root, 2 as the root of the left subtree, 3 as the
root of the right subtree, etc:

1
/ \
2 3

/ \ / \
4 5 6 7

(c) Define the function (5)

root :: Tree a -> a

which computes the information in the root of its input, or the
information in the leaf (if the tree is only a leaf).

(d) Explain why root nats does not lead to a nonterminating (15)
computation but to the result 1. In this explanation you must
explain what a value in Haskell is and contrast this with the def-
inition of values in eager languages. You must also explain how
a function application is computed in Haskell and contrast this
with other possible choices.
If you did not define the constant nats above, you can instead
use the constant ones defined by

ones = 1: ones

and explain the computation of the expression head ones . ee
the lecture on coinductive data types.

5

(e) If we look at the tree nats above we see that we can use positive
integers to index information in any finite tree. For instance, the
number 2 indexes the root of the left tree of a tree, etc. If we now
look at the binary representation of these numbers, we see that
this represents the path from the root of the tree to the number
(where O is the left subtree and I is the right subtree):

I
/\

/O \I
/ \
2 3

/O \I /O \I
4 5 6 7

For instance, the number 4 has the binary representation IOO,
which is the path from the root to the number 4.
So we can look at a binary number as a path in a binary tree, a
path reflecting the choices of subtrees.
The following function computes one of the longest paths of its
arguments:

longest :: Tree a -> Bin
longest (Leaf v) = Nil
longest (Tree v t1 t2) =

if depth t1 > depth t2 then O l1 else I l2
where l1 = longest t1

l2 = longest t2

Define the function (20)

longests :: Tree a -> [Bin]

which computes the list of all longest paths of the argument.

6

(f) We can look at a vector as a list in Haskell. We compute the
i:th element by traversing the list, and the length of the vector is
the length of the list. This makes indexing of the vector a rather
expensive operation: it will be proportional to the length of the
list.
But instead we can implement a vector as a binary tree indexed
by the corresponding binary number. The indexing operation can
then be made more efficient, as there is no need to traverse the
entire vector. Define now the function (20)

subBin :: Tree a -> Bin -> Maybe a

which is such that subBin t b will look up the b-th element
in the tree t. The exact meaning of this is seen when we see how
the function is used to define the indexing operation for vectors:

sub :: Tree a -> Integer -> Maybe a
sub t k = subBin t (toBin k)

So sub t k will look up the k-th element in t. For instance,

*Main> [(i, sub nats i) | i<-[1..10]]
[(1,Just 1),(2,Just 2),(3,Just 3),(4,Just 4),(5,Just 5),
(6,Just 6),(7,Just 7),(8,Just 8),(9,Just 9),(10,Just 10)]

e have to go down the tree along the path, the only trick is that
we must not forget to reverse the binary number. Otherwise it is
simple: we turn left or right depending on the digit in the path.

subBin t b = subr t (reversBin b)
subr (Leaf v) Nil = Just v
subr (Tree v t1 t2) Nil = Just v
subr (Tree v t1 t2) (O b) = subr t1 b
subr (Tree v t1 t2) (I b) = subr t2 b
subr _ _ = Nothing

(g) The length of a vector is the index of its last element. For binary
trees, this is the same as the maximal binary number which in- (15)
dexes an element, so it is the maximal path in the tree. So we
can define:

lengthN :: Tree a -> Integer
lengthN t = fromBin (lengthBin t)
lengthBin :: Tree a -> Bin

7

Your task is to define the function lengthBin above. otice that
the maximal path in the tree (seen as a binary number) is always
the rightmost longest paths. And it is exactly this path which
is computed by the function longest earlier. Now, we must re-
member that this function computes the path from the root to
the deepest element. But the binary index to the last element is
the path from the element to the root. So we have to reverse the
result:

lengthBin :: Tree a -> Bin
lengthBin t = reversBin (longest t)

3. Explain the difference between an overloaded function and a polymor-
phic function! Give examples (you can refer to earlier examples in this (20)
exam). ead about this in the lectures on overloading and type classes.
There is also a description of this in the book.

Good Luck!
Bengt
PS The next pages contains a list of function definitions.

8

-- Numerical functions: ---------------------------------------

(^) :: (Num a, Integral b) => a -> b -> a

x ^ 0 = 1

x ^ n|n > 0 = x * x^(n-1)

|True = error "Prelude.^: negative exponent"

gcd :: Integral a => a -> a -> a

gcd 0 0 = error "Prelude.gcd: gcd 0 0 is undefined"

gcd x y = gcd’ (abs x) (abs y)

where gcd’ x 0 = x

gcd’ x y = gcd’ y (x ‘mod‘ y)

sum, product :: Num a => [a] -> a

sum = foldr (+) 0

product = foldr (*) 1

-- Char functions:---

isAscii c = fromEnum c < 128

isControl c = c < ’ ’ || c == ’\DEL’

isPrint c = c >= ’ ’ && c <= ’ ~’

isSpace c = c == ’ ’ || c == ’\t’ || c == ’\n’ ||

c == ’\r’ || c == ’\f’ || c == ’\v’

isUpper c = c >= ’A’ && c <= ’Z’

isLower c = c >= ’a’ && c <= ’z’

isAlpha c = isUpper c || isLower c

isDigit c = c >= ’0’ && c <= ’9’

isAlphanum c = isAlpha c || isDigit c

toUpper, toLower :: Char -> Char

toUpper c | isLower c

= toEnum (fromEnum c - fromEnum ’a’ + fromEnum ’A’)

| otherwise = c

toLower c | isUpper c

= toEnum (fromEnum c - fromEnum ’A’ + fromEnum ’a’)

| otherwise = c

ord :: Char -> Int

ord = fromEnum

chr :: Int -> Char

chr = toEnum

-- List functions: ---

null :: [a] -> Bool

null [] = True

null (_:_) = False

head :: [a] -> a

head (x:_) = x

tail :: [a] -> [a]

tail (_:xs) = xs

last :: [a] -> a

last [x] = x

last (_:xs) = last xs

init :: [a] -> [a]

9

init [x] = []

init (x:xs) = x : init xs

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

concat :: [[a]] -> [a]

concat = foldr (++) []

length :: [a] -> Int

length [] = 0

length (_:xs) = 1 + length xs

reverse :: [a] -> [a]

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

elem :: Eq a => a -> [a] -> Bool

elem x [] = False

elem x (y:ys) = x == y || elem x ys

take, drop :: Int -> [a] -> [a]

take 0 _ = []

take _ [] = []

take n (x:xs) | n>0 = x : take (n-1) xs

take _ _ = error "PreludeList.take: negative argument"

drop 0 xs = xs

drop _ [] = []

drop n (_:xs) | n>0 = drop (n-1) xs

drop _ _ = error "PreludeList.drop: negative argument"

replicate :: Int -> a -> [a]

replicate 0 x = []

replicate n x | n>0 = x : replicate (n-1) x

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f e [] = e

foldr f e (x:xs) = f x (foldr f e xs)

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

zip :: [a] -> [b] -> [(a,b)]

zip (a:as) (b:bs) = (a,b):zip as bs

zip _ _ = []

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith z (a:as) (b:bs) = z a b : zipWith z as bs

zipWith _ _ _ = []

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x:filter p xs

| otherwise = filter p xs

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile p [] = []

takeWhile p (x:xs)

10

| p x = x : takeWhile p xs

| otherwise = []

dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p [] = []

dropWhile p (x:xs)

| p x = dropWhile p xs

| otherwise = x:xs

span, break :: (a -> Bool) -> [a] -> ([a],[a])

span p [] = ([],[])

span p xs@(x:xs’)

| p x = (x:ys,zs)

| otherwise = ([],xs)

where (ys,zs) = span p xs’

break p = span (not . p)

-- lines breaks a string up into a list of strings at newline characters.

-- The resulting strings do not contain newlines. Similary, words

-- breaks a string up into a list of words, which were delimited by

-- white space. unlines and unwords are the inverse operations.

-- unlines joins lines with terminating newlines, and unwords joins

-- words with separating spaces.

lines :: String -> [String]

lines "" = []

lines s = let (l, s’) = break (== ’\n’) s

in l : case s’ of

[] -> []

(_:s’’) -> lines s’’

words :: String -> [String]

words s = case dropWhile isSpace s of

"" -> []

s’ -> w : words s’’

where (w, s’’) = break isSpace s’

unlines :: [String] -> String

unlines = concatMap (++ "\n")

unwords :: [String] -> String

unwords [] = ""

unwords ws = foldr1 (\w s -> w ++ ’ ’:s) ws

until :: (a -> Bool) -> (a -> a) -> a -> a

until p f x = if p x then x else until p f (f x)

unzip :: [(a,b)] -> ([a],[b])

unzip [] = ([],[])

unzip ((a,b):xs) = let (as,bs) = unzip xs

in (a:as,b:bs)

nub :: (Eq a) => [a] -> [a]

nub [] = []

nub (x:xs) = x : [y | y <- xs, x /= y]

sort :: (Ord a) => [a] -> [a]

sort [] = []

sort (x:xs) = sort smaller ++ [x] ++ sort bigger

where

11

(smaller, bigger) = partition (< x) xs

and, or :: [Bool] -> Bool

and = foldr (&&) True

or = foldr (||) False

any, all :: (a -> Bool) -> [a] -> Bool

any p = or . map p

all p = and . map p

intersect :: Eq a => [a] -> [a] -> [a]

intersect = intersectBy (==)

intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]

intersectBy eq xs ys = [x | x <- xs, any (eq x) ys]

-- Standard combinators: --

flip :: (a -> b -> c) -> b -> a -> c

flip f x y = f y x

(.) :: (b -> c) -> (a -> b) -> a -> c

(f . g) x = f (g x)

fst :: (a,b) -> a

fst (x,_) = x

snd :: (a,b) -> b

snd (_,y) = y

curry :: ((a,b) -> c) -> (a -> b -> c)

curry f x y = f (x,y)

uncurry :: (a -> b -> c) -> ((a,b) -> c)

uncurry f p = f (fst p) (snd p)

id :: a -> a

id x = x

const :: a -> b -> a

const k _ = k

error :: String -> a -- primitive function, no definiton here

12

