
A tour of the Haskell Prelude

Bernie Pope∗

2001

1 Haskell

The Haskell language was conceived during a meeting held at the 1987 Func-
tional Programming and Computer Architecture conference (FPCA 87). At the
time of the conference it was believed that the advancement of functional pro-
gramming was being stifled by the wide variety of languages available. There
were more than a dozen lazy, purely functional languages in existence and none
had widespread support (except perhaps Miranda1). A committee was formed
to design the language. The name Haskell was chosen in honour of the mathe-
matician Haskell Curry, whose research forms part of the theoretical basis upon
which many functional languages are implemented. Haskell is widely used within
the functional programming community, and there exists a number of implemen-
tations. In 1998 the Haskell community agreed upon a standard definition of
the language and supporting libraries. One of the aims of standardisation was
to encourage the creation of text books and courses devoted to the language.
The resulting language definition is called Haskell 98.

Haskell is a lazy functional language with polymorphic higher-order func-
tions, algebraic data types and list comprehensions. It has an extensive mod-
ule system, and supports ad-hoc polymorphism (via classes). Haskell is purely
functional, even for I/O. Most Haskell implementations come with a num-
ber of libraries supporting arrays, complex numbers, infinite precision inte-
gers, operating system interaction, concurrency and mutable data structures.
There is a popular interpreter (called Hugs) and many compilers. More infor-
mation about the Haskell language can be found on following the web-page:
www.haskell.org.

Hugs2 is a freely available interpreter for Haskell, which runs under Unix,
Macintosh, and Microsoft Windows. One of the main features of Hugs is that it
provides an interactive programming environment which allows the programmer
to edit scripts, and evaluate arbitrary Haskell expressions. Hugs is based sig-
nificantly on Mark Jones’ Gofer interpreter. More information about the Hugs
interpreter can be found on the following web-page: www.haskell.org/hugs.

The following chapter serves as a reference guide to the Haskell language
(specifically Haskell 98). In particular it concentrates on the content of the
Haskell Prelude, which is a standard library accessible by all Haskell programs.

∗bjpop@cs.mu.oz.au
1Miranda is a trademark of Research Software, Ltd.
2Haskell Users’ Gofer System

1

The chapter does not give complete coverage to the whole Prelude, but in-
stead concentrates on those aspects most useful to Haskell beginners (however
it should serve as a valuable resource to experienced Haskell programmers as
well). The first part of the chapter deals with Prelude functions, the second
part of the chapter deals with Prelude operators, and the third part of the deals
with Prelude classes.

2

1.1 Functions from the Haskell Prelude

abs

type: abs :: Num a => a -> a

description: returns the absolute value of a number.

definition: abs x
| x >= 0 = x
| otherwise = -x

usage: Prelude> abs (-3)
3

all

type: all :: (a -> Bool) -> [a] -> Bool

description: applied to a predicate and a list, returns True if all elements
of the list satisfy the predicate, and False otherwise. Sim-
ilar to the function any.

definition: all p xs = and (map p xs)

usage: Prelude> all (<11) [1..10]
True
Prelude> all isDigit "123abc"
False

and

type: and :: [Bool] -> Bool

description: takes the logical conjunction of a list of boolean values (see
also ‘or’).

definition: and xs = foldr (&&) True xs

usage: Prelude> and [True, True, False, True]
False
Prelude> and [True, True, True, True]
True
Prelude> and []
True

any

type: any :: (a -> Bool) -> [a] -> Bool

description: applied to a predicate and a list, returns True if any of
the elements of the list satisfy the predicate, and False
otherwise. Similar to the function all.

definition: any p xs = or (map p xs)

3

usage: Prelude> any (<11) [1..10]
True
Prelude> any isDigit "123abc"
True
Prelude> any isDigit "alphabetics"
False

atan

type: atan :: Floating a => a -> a

description: the trigonometric function inverse tan.

definition: defined internally.

usage: Prelude> atan pi
1.26263

break

type: break :: (a -> Bool) -> [a] -> ([a],[a])

description: given a predicate and a list, breaks the list into two lists
(returned as a tuple) at the point where the predicate is
first satisfied. If the predicate is never satisfied then the
first element of the resulting tuple is the entire list and the
second element is the empty list ([]).

definition: break p xs
= span p’ xs
where
p’ x = not (p x)

usage: Prelude> break isSpace "hello there fred"
("hello", " there fred")
Prelude> break isDigit "no digits here"
("no digits here","")

ceiling

type: ceiling :: (RealFrac a, Integral b) => a -> b

description: returns the smallest integer not less than its argument.

usage: Prelude> ceiling 3.8
4
Prelude> ceiling (-3.8)
-3

note: the function floor has a related use to ceiling.

chr

type: chr :: Int -> Char

4

description: applied to an integer in the range 0 – 255, returns the
character whose ascii code is that integer. It is the converse
of the function ord. An error will result if chr is applied
to an integer outside the correct range.

definition: defined internally.

usage: Prelude> chr 65
’A’
Prelude> (ord (chr 65)) == 65
True

concat

type: concat :: [[a]] -> [a]

description: applied to a list of lists, joins them together using the ++
operator.

definition: concat xs = foldr (++) [] xs

usage: Prelude> concat [[1,2,3], [4], [], [5,6,7,8]]
[1, 2, 3, 4, 5, 6, 7, 8]

cos

type: cos :: Floating a => a -> a

description: the trigonometric cosine function, arguments are interpreted
to be in radians.

definition: defined internally.

usage: Prelude> cos pi
-1.0
Prelude> cos (pi/2)
-4.37114e-08

digitToInt

type: digitToInt :: Char -> Int

description: converts a digit character into the corresponding integer
value of the digit.

definition: digitToInt :: Char -> Int
digitToInt c
| isDigit c = fromEnum c - fromEnum ’0’
| c >= ’a’ && c <= ’f’ = fromEnum c - fromEnum ’a’ + 10
| c >= ’A’ && c <= ’F’ = fromEnum c - fromEnum ’A’ + 10
| otherwise = error "Char.digitToInt: not a digit"

usage: Prelude> digitToInt ’3’
3

div

5

type: div :: Integral a => a -> a -> a

description: computes the integer division of its integral arguments.

definition: defined internally.

usage: Prelude> 16 ‘div‘ 9
1

doReadFile

type: doReadFile :: String -> String

description: given a filename as a string, returns the contents of the file
as a string. Returns an error if the file cannot be opened
or found.

definition: defined internally.

usage: Prelude> doReadFile "foo.txt"
"This is a small text file,\ncalled foo.txt.\n"

note: This is not a standard Haskell function. You must import
the MULib.hs module to use this function.

drop

type: drop :: Int -> [a] -> [a]

description: applied to a number and a list, returns the list with the
specified number of elements removed from the front of the
list. If the list has less than the required number of elements
then it returns [].

definition: drop 0 xs = xs
drop _ [] = []
drop n (_:xs) | n>0 = drop (n-1) xs
drop _ _ = error "PreludeList.drop: negative argument"

usage: Prelude> drop 3 [1..10]
[4, 5, 6, 7, 8, 9, 10]
Prelude> drop 4 "abc"
""

dropWhile

type: dropWhile :: (a -> Bool) -> [a] -> [a]

description: applied to a predicate and a list, removes elements from
the front of the list while the predicate is satisfied.

definition: dropWhile p [] = []
dropWhile p (x:xs)
| p x = dropWhile p xs
| otherwise = (x:xs)

6

usage: Prelude> dropWhile (<5) [1..10]
[5, 6, 7, 8, 9, 10]

elem

type: elem :: Eq a => a -> [a] -> Bool

description: applied to a value and a list returns True if the value is in
the list and False otherwise. The elements of the list must
be of the same type as the value.

definition: elem x xs = any (== x) xs

usage: Prelude> elem 5 [1..10]
True
Prelude> elem "rat" ["fat", "cat", "sat", "flat"]
False

error

type: error :: String -> a

description: applied to a string creates an error value with an associated
message. Error values are equivalent to the undefined value
(undefined), any attempt to access the value causes the
program to terminate and print the string as a diagnostic.

definition: defined internally.

usage: error "this is an error message"

exp

type: exp :: Floating a => a -> a

description: the exponential function (exp n is equivalent to en).

definition: defined internally.

usage: Prelude> exp 1
2.71828

filter

type: filter :: (a -> Bool) -> [a] -> [a]

description: applied to a predicate and a list, returns a list containing
all the elements from the argument list that satisfy the
predicate.

definition: filter p xs = [k | k <- xs, p k]

usage: Prelude> filter isDigit "fat123cat456"
"123456"

flip

type: flip :: (a -> b -> c) -> b -> a -> c

7

description: applied to a binary function, returns the same function with
the order of the arguments reversed.

definition: flip f x y = f y x

usage: Prelude> flip elem [1..10] 5
True

floor

type: floor :: (RealFrac a, Integral b) => a -> b

description: returns the largest integer not greater than its argument.

usage: Prelude> floor 3.8
3
Prelude> floor (-3.8)
-4

note: the function ceiling has a related use to floor.

foldl

type: foldl :: (a -> b -> a) -> a -> [b] -> a

description: folds up a list, using a given binary operator and a given
start value, in a left associative manner.

foldl op r [a, b, c] → ((r ‘op‘ a) ‘op‘ b)
‘op‘ c

definition: foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

usage: Prelude> foldl (+) 0 [1..10]
55
Prelude> foldl (flip (:)) [] [1..10]
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

foldl1

type: foldl1 :: (a -> a -> a) -> [a] -> a

description: folds left over non–empty lists.

definition: foldl1 f (x:xs) = foldl f x xs

usage: Prelude> foldl1 max [1, 10, 5, 2, -1]
10

foldr

type: foldr :: (a -> b -> b) -> b -> [a] -> b

description: folds up a list, using a given binary operator and a given
start value, in a right associative manner.

8

foldr op r [a, b, c] → a ‘op‘ (b ‘op‘ (c
‘op‘ r))

definition: foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

usage: Prelude> foldr (++) [] ["con", "cat", "en", "ate"]
"concatenate"

foldr1

type: foldr1 :: (a -> a -> a) -> [a] -> a

description: folds right over non–empty lists.

definition: foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)

usage: Prelude> foldr1 (*) [1..10]
3628800

fromInt

type: fromInt :: Num a => Int -> a

description: Converts from an Int to a numeric type which is in the
class Num.

usage: Prelude> (fromInt 3)::Float
3.0

fromInteger

type: fromInteger :: Num a => Integer -> a

description: Converts from an Integer to a numeric type which is in
the class Num.

usage: Prelude> (fromInteger 10000000000)::Float
1.0e+10

fst

type: fst :: (a, b) -> a

description: returns the first element of a two element tuple.

definition: fst (x, _) = x

usage: Prelude> fst ("harry", 3)
"harry"

head

type: head :: [a] -> a

description: returns the first element of a non–empty list. If applied to
an empty list an error results.

9

definition: head (x:_) = x

usage: Prelude> head [1..10]
1
Prelude> head ["this", "and", "that"]
"this"

id

type: id :: a -> a

description: the identity function, returns the value of its argument.

definition: id x = x

usage: Prelude> id 12
12
Prelude> id (id "fred")
"fred"
Prelude> (map id [1..10]) == [1..10]
True

init

type: init :: [a] -> [a]

description: returns all but the last element of its argument list. The
argument list must have at least one element. If init is
applied to an empty list an error occurs.

definition: init [x] = []
init (x:xs) = x : init xs

usage: Prelude> init [1..10]
[1, 2, 3, 4, 5, 6, 7, 8, 9]

isAlpha

type: isAlpha :: Char -> Bool

description: applied to a character argument, returns True if the char-
acter is alphabetic, and False otherwise.

definition: isAlpha c = isUpper c || isLower c

usage: Prelude> isAlpha ’a’
True
Prelude> isAlpha ’1’
False

isDigit

type: isDigit :: Char -> Bool

description: applied to a character argument, returns True if the char-
acter is a numeral, and False otherwise.

10

definition: isDigit c = c >= ’0’ && c <= ’9’

usage: Prelude> isDigit ’1’
True
Prelude> isDigit ’a’
False

isLower

type: isLower :: Char -> Bool

description: applied to a character argument, returns True if the char-
acter is a lower case alphabetic, and False otherwise.

definition: isLower c = c >= ’a’ && c <= ’z’

usage: Prelude> isLower ’a’
True
Prelude> isLower ’A’
False
Prelude> isLower ’1’
False

isSpace

type: isSpace :: Char -> Bool

description: returns True if its character argument is a whitespace char-
acter and False otherwise.

definition: isSpace c = c == ’ ’ || c == ’\t’ || c == ’\n’ ||
c == ’\r’ || c == ’\f’ || c == ’\v’

usage: Prelude> dropWhile isSpace " \nhello \n"
"hello \n"

isUpper

type: isUpper :: Char -> Bool

description: applied to a character argument, returns True if the char-
acter is an upper case alphabetic, and False otherwise.

definition: isDigit c = c >= ’A’ && c <= ’Z’

usage: Prelude> isUpper ’A’
True
Prelude> isUpper ’a’
False
Prelude> isUpper ’1’
False

iterate

type: iterate :: (a -> a) -> a -> [a]

description: iterate f x returns the infinite list [x, f(x), f(f(x)), ...].

11

definition: iterate f x = x : iterate f (f x)

usage: Prelude> iterate (+1) 1
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

last

type: last :: [a] -> a

description: applied to a non–empty list, returns the last element of the
list.

definition: last [x] = x
last (_:xs) = last xs

usage: Prelude> last [1..10]
10

length

type: length :: [a] -> Int

description: returns the number of elements in a finite list.

definition: length [] = 0
length (x:xs) = 1 + length xs

usage: Prelude> length [1..10]
10

lines

type: lines :: String -> [String]

description: applied to a list of characters containing newlines, returns a
list of lists by breaking the original list into lines using the
newline character as a delimiter. The newline characters
are removed from the result.

definition: lines [] = []
lines (x:xs)
= l : ls
where
(l, xs’) = break (== ’\n’) (x:xs)
ls
| xs’ == [] = []
| otherwise = lines (tail xs’)

usage: Prelude> lines "hello world\nit’s me,\neric\n"
["hello world", "it’s me,", "eric"]

log

type: log :: Floating a => a -> a

description: returns the natural logarithm of its argument.

12

definition: defined internally.

usage: Prelude> log 1
0.0
Prelude> log 3.2
1.16315

map

type: map :: (a -> b) -> [a] -> [b]

description: given a function, and a list of any type, returns a list where
each element is the result of applying the function to the
corresponding element in the input list.

definition: map f xs = [f x | x <- xs]

usage: Prelude> map sqrt [1..5]
[1.0, 1.41421, 1.73205, 2.0, 2.23607]

max

type: max :: Ord a => a -> a -> a

description: applied to two values of the same type which have an or-
dering defined upon them, returns the maximum of the two
elements according to the operator >=.

definition: max x y
| x >= y = x
| otherwise = y

usage: Prelude> max 1 2
2

maximum

type: maximum :: Ord a => [a] -> a

description: applied to a non–empty list whose elements have an order-
ing defined upon them, returns the maximum element of
the list.

definition: maximum xs = foldl1 max xs

usage: Prelude> maximum [-10, 0 , 5, 22, 13]
22

min

type: min :: Ord a => a -> a -> a

description: applied to two values of the same type which have an or-
dering defined upon them, returns the minimum of the two
elements according to the operator <=.

13

definition: min x y
| x <= y = x
| otherwise = y

usage: Prelude> min 1 2
1

minimum

type: minimum :: Ord a => [a] -> a

description: applied to a non–empty list whose elements have an order-
ing defined upon them, returns the minimum element of
the list.

definition: minimum xs = foldl1 min xs

usage: Prelude> minimum [-10, 0 , 5, 22, 13]
-10

mod

type: mod :: Integral a => a -> a -> a

description: returns the modulus of its two arguments.

definition: defined internally.

usage: Prelude> 16 ‘mod‘ 9
7

not

type: not :: Bool -> Bool

description: returns the logical negation of its boolean argument.

definition: not True = False
not False = True

usage: Prelude> not (3 == 4)
True
Prelude> not (10 > 2)
False

or

type: or :: [Bool] -> Bool

description: applied to a list of boolean values, returns their logical
disjunction (see also ‘and’).

definition: or xs = foldr (||) False xs

14

usage: Prelude> or [False, False, True, False]
True
Prelude> or [False, False, False, False]
False
Prelude> or []
False

ord

type: ord :: Char -> Int

description: applied to a character, returns its ascii code as an integer.

definition: defined internally.

usage: Prelude> ord ’A’
65
Prelude> (chr (ord ’A’)) == ’A’
True

pi

type: pi :: Floating a => a

description: the ratio of the circumference of a circle to its diameter.

definition: defined internally.

usage: Prelude> pi
3.14159
Prelude> cos pi
-1.0

putStr

type: putStr :: String -> IO ()

description: takes a string as an argument and returns an I/O action as
a result. A side-effect of applying putStr is that it causes
its argument string to be printed to the screen.

definition: defined internally.

usage: Prelude> putStr "Hello World\nI’m here!"
Hello World
I’m here!

product

type: product :: Num a => [a] -> a

description: applied to a list of numbers, returns their product.

definition: product xs = foldl (*) 1 xs

usage: Prelude> product [1..10]
3628800

15

repeat

type: repeat :: a -> [a]

description: given a value, returns an infinite list of elements the same
as the value.

definition: repeat x
= xs
where xs = x:xs

usage: Prelude> repeat 12
[12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12

replicate

type: replicate :: Int -> a -> [a]

description: given an integer (positive or zero) and a value, returns a list
containing the specified number of instances of that value.

definition: replicate n x = take n (repeat x)

usage: Prelude> replicate 3 "apples"
["apples", "apples", "apples"]

reverse

type: reverse :: [a] -> [a]

description: applied to a finite list of any type, returns a list of the same
elements in reverse order.

definition: reverse = foldl (flip (:)) []

usage: Prelude> reverse [1..10]
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

round

type: round :: (RealFrac a, Integral b) => a -> b

description: rounds its argument to the nearest integer.

usage: Prelude> round 3.2
3
Prelude> round 3.5
4
Prelude> round (-3.2)
-3

show

type: show :: Show a => a -> String

description: converts a value (which must be a member of the Show
class), to its string representation.

16

definition: defined internally.

usage: Prelude> "six plus two equals " ++ (show (6 + 2))
"six plus two equals 8"

sin

type: sin :: Floating a => a -> a

description: the trigonometric sine function, arguments are interpreted
to be in radians.

definition: defined internally.

usage: Prelude> sin (pi/2)
1.0
Prelude> ((sin pi)^2) + ((cos pi)^2)
1.0

snd

type: snd :: (a, b) -> b

description: returns the second element of a two element tuple.

definition: snd (_, y) = y

usage: Prelude> snd ("harry", 3)
3

sort

type: sort :: Ord a => [a] -> [a]

description: sorts its argument list in ascending order. The items in the
list must be in the class Ord.

usage: List> sort [1, 4, -2, 8, 11, 0]
[-2,0,1,4,8,11]

note: This is not defined within the Prelude. You must import
the List.hs module to use this function.

span

type: span :: (a -> Bool) -> [a] -> ([a],[a])

description: given a predicate and a list, splits the list into two lists
(returned as a tuple) such that elements in the first list
are taken from the head of the list while the predicate is
satisfied, and elements in the second list are the remaining
elements from the list once the predicate is not satisfied.

definition: span p [] = ([],[])
span p xs@(x:xs’)
| p x = (x:ys, zs)
| otherwise = ([],xs)
where (ys,zs) = span p xs’

17

usage: Prelude> span isDigit "123abc456"
("123", "abc456")

splitAt

type: splitAt :: Int -> [a] -> ([a],[a])

description: given an integer (positive or zero) and a list, splits the list
into two lists (returned as a tuple) at the position corre-
sponding to the given integer. If the integer is greater than
the length of the list, it returns a tuple containing the en-
tire list as its first element and the empty list as its second
element.

definition: splitAt 0 xs = ([],xs)
splitAt _ [] = ([],[])
splitAt n (x:xs)
| n > 0 = (x:xs’,xs’’)
where
(xs’,xs’’) = splitAt (n-1) xs

splitAt _ _ = error "PreludeList.splitAt: negative argument"

usage: Prelude> splitAt 3 [1..10]
([1, 2, 3], [4, 5, 6, 7, 8, 9, 10])
Prelude> splitAt 5 "abc"
("abc", "")

sqrt

type: sqrt :: Floating a => a -> a

description: returns the square root of a number.

definition: sqrt x = x ** 0.5

usage: Prelude> sqrt 16
4.0

subtract

type: subtract :: Num a => a -> a -> a

description: subtracts its first argument from its second argument.

definition: subtract = flip (-)

usage: Prelude> subtract 7 10
3

sum

type: sum :: Num a => [a] -> a

description: computes the sum of a finite list of numbers.

definition: sum xs = foldl (+) 0 xs

18

usage: Prelude> sum [1..10]
55

tail

type: tail :: [a] -> [a]

description: applied to a non–empty list, returns the list without its
first element.

definition: tail (_:xs) = xs

usage: Prelude> tail [1,2,3]
[2,3]
Prelude> tail "hugs"
"ugs"

take

type: take :: Int -> [a] -> [a]

description: applied to an integer (positive or zero) and a list, returns
the specified number of elements from the front of the list.
If the list has less than the required number of elements,
take returns the entire list.

definition: take 0 _ = []
take _ []= []
take n (x:xs)
| n > 0 = x : take (n-1) xs

take _ _ = error "PreludeList.take: negative argument"

usage: Prelude> take 4 "goodbye"
"good"
Prelude> take 10 [1,2,3]
[1,2,3]

takeWhile

type: takewhile :: (a -> Bool) -> [a] -> [a]

description: applied to a predicate and a list, returns a list containing
elements from the front of the list while the predicate is
satisfied.

definition: takeWhile p [] = []
takeWhile p (x:xs)
| p x = x : takeWhile p xs
| otherwise = []

usage: Prelude> takeWhile (<5) [1, 2, 3, 10, 4, 2]
[1, 2, 3]

tan

type: tan :: Floating a => a -> a

19

description: the trigonometric function tan, arguments are interpreted
to be in radians.

definition: defined internally.

usage: Prelude> tan (pi/4)
1.0

toLower

type: toLower :: Char -> Char

description: converts an uppercase alphabetic character to a lowercase
alphabetic character. If this function is applied to an ar-
gument which is not uppercase the result will be the same
as the argument unchanged.

definition: toLower c
| isUpper c = toEnum (fromEnum c - fromEnum ’A’ + fromEnum ’a’)
| otherwise = c

usage: Prelude> toLower ’A’
’a’
Prelude> toLower ’3’
’3’

toUpper

type: toUpper :: Char -> Char

description: converts a lowercase alphabetic character to an uppercase
alphabetic character. If this function is applied to an ar-
gument which is not lowercase the result will be the same
as the argument unchanged.

definition: toUpper c
| isLower c = toEnum (fromEnum c - fromEnum ’a’ + fromEnum ’A’)
| otherwise = c

usage: Prelude> toUpper ’a’
’A’
Prelude> toUpper ’3’
’3’

truncate

type: truncate :: (RealFrac a, Integral b) => a -> b

description: drops the fractional part of a floating point number, re-
turning only the integral part.

usage: Prelude> truncate 3.2
3
Prelude> truncate (-3.2)
-3

20

note:

unlines

type: unlines :: [String] -> String

description: converts a list of strings into a single string, placing a new-
line character between each of them. It is the converse of
the function lines.

definition: unlines xs
= concat (map addNewLine xs)
where
addNewLine l = l ++ "\n"

usage: Prelude> unlines ["hello world", "it’s me,", "eric"]
"hello world\nit’s me,\neric\n"

until

type: until :: (a -> Bool) -> (a -> a) -> a -> a

description: given a predicate, a unary function and a value, it recur-
sively re–applies the function to the value until the pred-
icate is satisfied. If the predicate is never satisfied until
will not terminate.

definition: until p f x
| p x = x
| otheriwise = until p f (f x)

usage: Prelude> until (>1000) (*2) 1
1024

unwords

type: unwords :: [String] -> String

description: concatenates a list of strings into a single string, placing a
single space between each of them.

definition: unwords [] = []
unwords ws
= foldr1 addSpace ws
where
addSpace w s = w ++ (’ ’:s)

usage: Prelude> unwords ["the", "quick", "brown", "fox"]
"the quick brown fox"

words

type: words :: String -> [String]

description: breaks its argument string into a list of words such that
each word is delimited by one or more whitespace charac-
ters.

21

definition: words s
| findSpace == [] = []
| otherwise = w : words s’’
where
(w, s’’) = break isSpace findSpace
findSpace = dropWhile isSpace s

usage: Prelude> words "the quick brown\n\nfox"
["the", "quick", "brown", "fox"]

zip

type: zip :: [a] -> [b] -> [(a,b)]

description: applied to two lists, returns a list of pairs which are formed
by tupling together corresponding elements of the given
lists. If the two lists are of different length, the length of
the resulting list is that of the shortest.

definition: zip xs ys
= zipWith pair xs ys
where
pair x y = (x, y)

usage: Prelude> zip [1..6] "abcd"
[(1, ’a’), (2, ’b’), (3, ’c’), (4, ’d’)]

zipWith

type: zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

description: applied to a binary function and two lists, returns a list
containing elements formed be applying the function to cor-
responding elements in the lists.

definition: zipWith z (a:as) (b:bs) = z a b : zipWith z as bs
zipWith _ _ _ = []

usage: Prelude> zipWith (+) [1..5] [6..10]
[7, 9, 11, 13, 15]

22

1.2 A description of standard Haskell operators

Operators are simply functions of one or two arguments. Operators usually get
written between their arguments (called infix notation), rather than to the left
of them. Many operators have symbolic names (like + for plus), however this is
out of convention rather than necessity. Others have completely textual names
(such as ‘div‘ for integer division).

The following table lists many useful operators defined in the Prelude. Def-
initions of associativity and binding power are given after the table.

symbol behaviour type assoc– bind–
iativity ing

power
!! list subscript [a] -> Int -> a left 9
. compose (a -> b) -> (c -> a) right 9

-> c -> b
^ exponentiation (Integral b, Num a) => right 8

a -> b -> a
** exponentiation Floating a => a -> a -> a right 8
* multiplication Num a => a -> a -> a left 7
/ division Fractional a => a -> a -> a left 7
‘div‘ integer division Integral a => a -> a -> a left 7
‘mod‘ modulus Integral a => a -> a -> a left 7
+ plus Num a => a -> a -> a left 6
- minus Num a => a -> a -> a left 6
: list construct a -> [a] -> [a] right 5
++ concatenate [a] -> [a] -> [a] right 5
/= not equal Eq a => a -> a -> Bool non 4
== equal Eq a => a -> a -> Bool non 4
< less than Ord a => a -> a -> Bool non 4
<= less than Ord a => a -> a -> Bool non 4

or equal
> greater than Ord a => a -> a -> Bool non 4
>= greater than Ord a => a -> a -> Bool non 4

or equal
‘elem‘ list contains Eq a => a -> [a] -> Bool non 4
‘notElem‘ list not contains Eq a => a -> [a] -> Bool non 4
&& logical and Bool -> Bool -> Bool right 3
|| logical or Bool -> Bool -> Bool right 3
The higher the binding power the more tightly the operator binds to its arguments.

Function application has a binding power of 10,
and so takes preference over any other operator application.

23

Associativity: sequences of operator applications are allowed in Haskell for
the convenience of the programmer. However, in some circumstances the mean-
ing of such a sequence can be ambiguous. For example, we could interpret the
expression 8 - 2 - 1 in two ways, either as (8 - 2) - 1, or as 8 - (2 - 1)
(each interpretation having a different value). Associativity tells us whether a
sequence of a particular operator should be bracketed to the left or to the right.
As it happens, the minus operator (-) is left associative, and so Haskell chooses
the first of the alternative interpretations as the meaning of the above expres-
sion. The choice of associativity for an operator is quite arbitrary, however,
they usually follow conventional mathematical notation. Note that some opera-
tors are non-associative, which means that they cannot be applied in sequence.
For example, the equality operator (==) is non–associative, and therefore the
following expression is not allowed in Haskell: 2 == (1 + 1) == (3 - 1).

Binding Power: Haskell expressions may also contain a mixture of oper-
ator applications which can lead to ambiguities that the rules of associativity
cannot solve. For example, we could interpret the expression 3 - 4 * 2 in two
ways, either as (3 - 4) * 2, or as 3 - (4 * 2) (each interpretation having a
different value). Binding power tells us which operators take precedence in an
expression containing a mixture of operators. The multiplication operator (*),
has a binding power of 7 (out of a possible 10), and the minus operator (-) has
a binding power of 6. Therefore the multiplication operator takes precedence
over the minus operator, and thus Haskell chooses the second of the alternative
interpretations as the meaning of the above expression. All operators must have
a binding power assigned to them which ranges from 1 to 10. Function applica-
tion takes prededence over everything else in an expression, and so the expres-
sion reverse [1..10] ++ [0] is interpreted as (reverse [1..10]) ++ [0],
rather than reverse ([1..10] ++ [0]).

1.3 Using the standard Haskell operators

!!

description: given a list and a number, returns the element of the list
whose position is the same as the number.

usage: Prelude> [1..10] !! 0
1
Prelude> "a string" !! 3
’t’

notes: the valid subscripts for a list l are: 0 ≤ subscript ≤ ((length l)−
1). Therefore, negative subscripts are not allowed, nor are
subsripts greater than one less than the length of the list
argument. Subscripts out of this range will result in a pro-
gram error.

.

description: composes two functions into a single function.

usage: Prelude> (sqrt . sum) [1,2,3,4,5]
3.87298

24

notes: (f.g.h) x is equivalent to f (g (h x)).

**

description: raises its first argument to the power of its second argu-
ment. The arguments must be in the Floating numerical
type class, and the result will also be in that class.

usage: Prelude> 3.2**pi
38.6345

^

description: raises its first argument to the power of its second argu-
ment. The first argument must be a member of the Num
typeclass, and the second argument must be a member of
the Integral typeclass. The result will be of the same type
as the first argument.

usage: Prelude> 3.2^4
104.858

%

description: takes two numbers in the Integral typeclass and returns
the most simple ratio of the two.

usage: Prelude> 20 % 4
5 % 1
Prelude> (5 % 4)^2
25 % 16

*

description: returns the multiple of its two arguments.

usage: Prelude> 6 * 2.0
12.0

/

description: returns the result of dividing its first argument by its sec-
ond. Both arguments must in the type class Fractional.

usage: Prelude> 12.0 / 2
6.0

‘div‘

description: returns the integral division of the first argument by the
second argument. Both arguments must be in the type
class Integral.

usage: Prelude> 10 ‘div‘ 3
3
Prelude> 3 ‘div‘ 10
0

25

notes: ‘div‘ is integer division such that the result is truncated
towards negative infinity.

Prelude> (-12) ‘div‘ 5
-3
Prelude> 12 ‘div‘ 5
2

‘mod‘

description: returns the integral remainder after dividing the first argu-
ment by the second. Both arguments must be in the type
class Integral.

usage: Prelude> 10 ‘mod‘ 3
1
Prelude> 3 ‘mod‘ 10
3

+

description: returns the addition of its arguments.

usage: Prelude> 3 + 4
7
Prelude> (4 % 5) + (1 % 5)
1 % 1

-

description: returns the substraction of its second argument from its
first.

usage: Prelude> 4 - 3
1
Prelude> 4 - (-3)
7

:

description: prefixes an element onto the front of a list.

usage: Prelude> 1:[2,3]
[1,2,3]
Prelude> True:[]
[True]
Prelude> ’h’:"askell"
"haskell"

++

description: appends its second list argument onto the end of its first
list argument.

26

usage: Prelude> [1,2,3] ++ [4,5,6]
[1,2,3,4,5,6]
Prelude> "foo " ++ "was" ++ " here"
"foo was here"

/=

description: is True if its first argument is not equal to its second ar-
gument, and False otherwise. Equality is defined by the
== operator. Both of its arguments must be in the Eq type
class.

usage: Prelude> 3 /= 4
True
Prelude> [1,2,3] /= [1,2,3]
False

==

description: is True if its first argument is equal to its second argu-
ment, and False otherwise. Equality is defined by the ==
operator. Both of its arguments must be in the Eq

usage: Prelude> 3 == 4
False
Prelude> [1,2,3] == [1,2,3]
True

<

description: returns True if its first argument is strictly less than its
second argument, and False otherwise. Both arguments
must be in the type class Ord.

usage: Prelude> 1 < 2
True
Prelude> ’a’ < ’z’
True
Prelude> True < False
False

<=

description: returns True if its first argument is less than or equal to its
second argument, and False otherwise. Both arguments
must be in the type class Ord.

usage: Prelude> 3 <= 4
True
Prelude> 4 <= 4
True
Prelude> 5 <= 4
False

>

27

description:

usage: returns True if its first argument is strictly greater than its
second argument, and False otherwise. Both arguments
must be in the type class Ord.

Prelude> 2 > 1
True
Prelude> ’a’ > ’z’
False
Prelude> True > False
True

>=

description:

usage: returns True if its first argument is greater than or equal to
its second argument, and False otherwise. Both arguments
must be in the type class Ord.

Prelude> 4 >= 3
True
Prelude> 4 >= 4
True
Prelude> 4 >= 5
False

‘elem‘

description: returns True if its first argument is an element of the list
as its second argument, and False otherwise.

usage: Prelude> 3 ‘elem‘ [1,2,3]
True
Prelude> 4 ‘elem‘ [1,2,3]
False

‘notElem‘

description: returns True if its first argument is not an element of the
list as its second argument.

usage: Prelude> 3 ‘notElem‘ [1,2,3]
False
Prelude> 4 ‘notElem‘ [1,2,3]
True

&&

description: returns the logical conjunction of its two boolean argu-
ments.

28

usage: Prelude> True && True
True
Prelude> (3 < 4) && (4 < 5) && False
False

||

description: returns the logical disjunction of its two boolean argu-
ments.

usage: Prelude> True || False
True
Prelude> (3 < 4) || (4 > 5) || False
True

29

1.4 Type Classes from the Haskell Prelude

Eq

description: Types which are instances of this class have equality defined
upon them. This means that all elements of such types can
be compared for equality.

instances: • All Prelude types except IO and functions.

notes: Functions which use the equality operators (==, /=) or the
functions elem or notElem will often be subject to the Eq
type class, thus requiring the constraint Eq a => in the
type signature for that function.

Ord

description: Types which are instances of this class have a complete
ordering defined upon them.

instances: • All Prelude types except IO, functions, and IOError.

notes: Functions which use the comparison operators (>, <, >=,
<=), or the functions max, min, maximum or minimum will
often be subject to the Ord type class, thus requiring the
constraint Ord a => in the type signature for that function.

Enum

description: Types which are instances of this class can be enumerated.
This means that all elements of such types have a mapping
to a unique integer, thus the elements of the type must be
sequentially ordered.

instances: • Bool

• Char

• Int

• Integer

• Float

• Double

notes: Functions which use dot-dot notation (eg [1,3 .. y]) in
list comprehensions will often be subject to the Enum type
class, thus requiring the constraint Enum a => in the type
signature for that function.

Show

description: Types which are instances of this class have a printable
representation. This means that all elements of such types
can be given as arguments to the function show.

instances: • All Prelude types.

30

notes: Functions which use the function show will often be subject
to the Show type class, thus requiring the constraint Show
a => in the type signature for that function.

Read

description: Types which are instances of this class allow a string rep-
resentation of all elements of the type to be converted to
the corresponding element.

instances: • All Prelude types except IO and functions.

notes: Functions which use the function read will often be subject
to the Read type class, thus requiring the constraint Read
a => in the type signature for that function.

Num

description: This is the parent class for all the numeric classes. Any type
which is an instance of this class must have basic numeric
operators (such as plus, minus and multiply) defined on
them, and must be able to be converted from an Int or
Integer to an element of the type.

instances: • Int

• Integer

• Float

• Double

notes: Functions which perform operations which are applicable to
all numeric types, but not to other non–numeric types will
often be subject to the Num type class, thus requiring the
constraint Num a => in the type signature for that function.

Real

description: This class covers all the numeric types whose elements can
be expressed as a ratio.

instances: • Int

• Integer

• Float

• Double

Fractional

description: This class covers all the numeric types whose elements are
fractional. All such types must have division defined upon
them, they must have a reciprocal, and must be convertible
from rational numbers, and double precision floating point
numbers.

instances: • Float

31

• Double

notes: Functions which use the division operator (/) will often be
subject to the Fractional type class, thus requiring the
constraint Fractional a => in the type signature for that
function.

Integral

description: This class covers all the numeric types whose elements are
integral.

instances: • Int

• Integer

notes: Functions which use the operators div or mod will often
be subject to the Integral type class, thus requiring the
constraint Integral a => in the type signature for that
function.

Floating

description: This class covers all the numeric types whose elements are
floating point numbers.

instances: • Float

• Double

notes: Functions which use the constant pi or the functions exp,
log, sqrt, sin, cos or tan will often be subject to the
Floating type class, thus requiring the constraint Floating
a => in the type signature for that function.

1.5 The Haskell Prelude Class hierarchy

Figure ?? illustrates a sample of the type class hierarchy from the Haskell Pre-
lude. Arrows in the diagram represent the ordering of classes in the hierarchy.
For example, for a type to be in the class Ord it must also be in the class Eq.
Note that the class Read is separate from the rest of the hierarchy.

32

Num

FloatingIntegral

Ord

RealEnum Fractional

ShowEq

Read

Figure 1: A sample of the class hierarchy from the Haskell Prelude

33

