
Higher-Order Functions

The Heart and Soul of Functional

Programming

What is a “Higher Order” Function?

A function which takes another function as a parameter.

Examples

map even [1, 2, 3, 4, 5] = [False, True, False, True, False]

filter even [1, 2, 3, 4, 5] = [2, 4]

even :: Int -> Bool

even n = n`mod` 2 == 0

What is the Type of filter?

filter even [1, 2, 3, 4, 5] = [2, 4]

even :: Int -> Bool

filter :: (Int -> Bool) -> [Int] -> [Int]

filter :: (a -> Bool) -> [a] -> [a]

A function type can be

the type of an argument.

Quiz: What is the Type of map?

Example

map even [1, 2, 3, 4, 5] = [False, True, False, True, False]

map also has a polymorphic type -- can you write it

down?

Quiz: What is the Type of map?

Example

map even [1, 2, 3, 4, 5] = [False, True, False, True,

False]

map :: (a -> b) -> [a] -> [b]

Any function of

one argument
Any list of

arguments

List of

results

Quiz: What is the Definition of map?

Example

map even [1, 2, 3, 4, 5] = [False, True, False, True,

False]

map :: (a -> b) -> [a] -> [b]

map = ?

Quiz: What is the Definition of map?

Example

map even [1, 2, 3, 4, 5] = [False, True, False, True,

False]

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

Is this “Just Another Feature”?

NO!!!
•Higher-order functions are the “heart and soul” of

functional programming!

•A higher-order function can do much more than a

“first order” one, because a part of its behaviour can

be controlled by the caller.

•We can replace many similar functions by one higher-

order function, parameterised on the differences.

Case Study: Summing a List

sum [] = 0

sum (x:xs) = x + sum xs

General Idea

Combine the elements of a list using an operator.

Specific to Summing

The operator is +, the base case returns 0.

Case Study: Summing a List

sum [] = 0

sum (x:xs) = x + sum xs

Replace 0 and + by parameters -- + by a function.

foldr op z [] = z

foldr op z (x:xs) = x `op` foldr op z xs

Case Study: Summing a List

New Definition of sum

or just…

Just as `fun` lets a function be used as an operator,

so (op) lets an operator be used as a function.

sum xs = foldr plus 0 xs

where plus x y = x+y

sum xs = foldr (+) 0 xs

Applications

Combining the elements of a list is a common operation.

Now, instead of writing a recursive function, we can just

use foldr!

product xs = foldr (*) 1 xs
and xs = foldr (&&) True xs
concat xs = foldr (++) [] xs
maximum (x:xs) = foldr max x xs

An Intuition About foldr

a : b : c : d : ... : []

a Ψ (b Ψ (c Ψ (d Ψ ... Ψ z

The operator “:” is replaced by Ψ and [] is replaced by z.

foldr (Ψ) z

An Intuition About foldr

foldr op z [] = z
foldr op z (x:xs) = x `op` foldr op z xs

Example

foldr op z (a:(b:(c:[]))) = a `op` foldr op z (b:(c:[]))

= a `op` (b `op` foldr op z (c:[]))

= a `op` (b `op` (c `op` foldr op z []))

= a `op` (b `op` (c `op` z))

The operator “:” is replaced by `op`, [] is replaced by z.

Quiz

What is

foldr (:) [] xs

Quiz

What is

foldr (:) [] xs

Replaces “:” by “:”, and [] by [] -- no change!

The result is equal to xs.

Quiz

What is

foldr (:) ys xs

Quiz

What is

foldr (:) ys xs

foldr (:) ys (a:(b:(c:[])))

= a:(b:(c:ys))

The result is xs++ys! xs++ys = foldr (:) ys xs

Quiz

What is

foldr snoc [] xs

where snoc y ys = ys++[y]

Quiz

What is

foldr snoc [] xs

where snoc y ys = ys++[y]

foldr snoc [] (a:(b:(c:[])))

= a `snoc` (b `snoc` (c `snoc` []))

= (([] ++ [c]) ++ [b] ++ [a]

The result is reverse xs!
reverse xs = foldr snoc [] xs

where snoc y ys = ys++[y]

-expressions

reverse xs = foldr snoc [] xs

where snoc y ys = ys++[y]

It’s a nuisance to need to define snoc, which we only

use once! A -expression lets us define it where it is

used.

reverse xs = foldr (y ys -> ys++[y]) [] xs

On the keyboard:

reverse xs = foldr (\y ys -> ys++[y]) [] xs

Defining unlines

unlines [“abc”, “def”, “ghi”] = “abc\ndef\nghi\n”

unlines [xs,ys,zs] = xs ++ “\n” ++ (ys ++ “\n” ++ (zs ++ “\n” ++ []))

unlines xss = foldr (xs ys -> xs++“\n”++ys) [] xss

Just the same as

unlines xss = foldr join [] xss

where join xs ys = xs ++ “\n” ++ ys

Further Standard Higher-Order

Functions

Another Useful Pattern

Example: takeLine “abc\ndef” = “abc”

used to define lines.

takeLine [] = []
takeLine (x:xs)

| x/=´\n´ = x:takeLine xs
| otherwise = []

General Idea

Take elements from a list while a condition is satisfied.

Specific to takeLine

The condition is that the element is not ´\n´.

Generalising takeLine

takeWhile p [] = []
takeWhile p (x:xs)

| p x = x : takeWhile p xs
| otherwise = []

New Definition

takeLine xs = takeWhile (x -> x/=´\n´) xs

or takeLine xs = takeWhile (/=´\n´) xs

takeLine [] = []
takeLine (x:xs)
| x/=´\n´ = x : takeLine xs
| otherwise = []

Notation: Sections

As a shorthand, an operator with one argument stands

for a function of the other…

• map (+1) [1,2,3] = [2,3,4]

• filter (<0) [1,-2,3] = [-2]

• takeWhile (0<) [1,-2,3] = [1]

Note that expressions like (*2+1) are not allowed.

Write x -> x*2+1 instead.

(a¤) b = a¤b

(¤a) b = b¤a

Defining lines

We use

• takeWhile p xs -- returns the longest prefix of xs

-- whose elements satisfy p.

• dropWhile p xs -- returns the rest of the list.

lines [] = []

lines xs = takeWhile (/=´\n´) xs :

lines (tail (dropWhile (/=´\n´) xs))

General idea Break a list into segments whose

elements share some property.

Specific to lines The property is: “are not newlines”.

Quiz: Properties of takeWhile and

dropWhile

takeWhile, dropWhile :: (a -> Bool) -> [a] -> [a]

prop_TakeWhile_DropWhile p xs =

takeWhile p xs ++ dropWhile p xs == (xs :: [Int])

Can you think of a property that

connects takeWhile and dropWhile?

Hint: Think of a property that connects take and

drop
Use import

Text.Show.Functions

Generalising lines

segments p [] = []

segments p xs = takeWhile p xs :

segments p (drop 1 (dropWhile p xs))

Example

segments (>=0) [1,2,3,-1,4,-2,-3,5]

= [[1,2,3], [4], [], [5]]

lines xs = segments (/=´\n´) xs

segments is

not a standard

function.

Quiz: Comma-Separated Lists

Many Windows programs store data in files as “comma

separated lists”, for example

1,2,hello,4

Define commaSep :: String -> [String]

so that

commaSep “1,2,hello,4” == [“1”, “2”, “hello”, “4”]

Quiz: Comma-Separated Lists

Many Windows programs store data in files as “comma

separated lists”, for example

1,2,hello,4

Define commaSep :: String -> [String]

so that

commaSep “1,2,hello,4” == [“1”, “2”, “hello”, “4”]

commaSep xs = segments (/=´,´) xs

Defining words

We can almost define words using segments -- but

segments (not . isSpace) “a b” = [“a”, “”, “b”]

which is not what we want -- there should be no empty

words.

words xs = filter (/=“”) (segments (not . isSpace) xs)

Function composition

(f . g) x = f (g x)

Partial Applications

Haskell has a trick which lets us write down many

functions easily. Consider this valid definition:

sum = foldr (+) 0

foldr was defined with

3 arguments. It’s being

called with 2.

What’s going on?

Partial Applications

sum = foldr (+) 0

Evaluate sum [1,2,3]

= {replacing sum by its definition}

foldr (+) 0 [1,2,3]

= {by the behaviour of foldr}

1 + (2 + (3 + 0))

= 6

Now foldr has the

right number of

arguments!

Partial Applications

Any function may be called with fewer arguments

than it was defined with.

The result is a function of the remaining arguments.

If f ::Int -> Bool -> Int -> Bool

then f 42 :: Bool -> Int -> Bool

f 42 True :: Int -> Bool

f 42 True 42 :: Bool

Bracketing Function Calls and

Types

We say function application “brackets to the left”

function types “bracket to the right”

If f ::Int -> (Bool -> (Int -> Bool))

then f 3 :: Bool -> (Int -> Bool)

(f 3) True :: Int -> Bool

((f 3) True) 4 :: Bool

Functions really

take only one

argument, and

return (in this case)

a function

expecting more

as a result.

Designing with Higher-Order

Functions

•Break the problem down into a series of small steps,

each of which can be programmed using an existing

higher-order function.

•Gradually “massage” the input closer to the desired

output.

•Compose together all the massaging functions to get the

result.

Example: Counting Words

Input

A string representing a text containing many words. For

example

“hello clouds hello sky”

Output

A string listing the words in order, along with how many

times each word occurred.

“clouds: 1\nhello: 2\nsky: 1”
clouds: 1

hello: 2

sky: 1

Step 1: Breaking Input into Words

“hello clouds\nhello sky”

[“hello”, “clouds”, “hello”, “sky”]

words

Step 2: Sorting the Words

[“clouds”, “hello”, “hello”, “sky”]

sort

[“hello”, “clouds”, “hello”, “sky”]

Digression: The groupBy Function

groupBy :: (a -> a -> Bool) -> [a] -> [[a]]

groupBy p xs

groupBy (<) [3,2,4,3,1,5] = [[3], [2,4,3], [1,5]]

groupBy (==) “hello” = [“h”, “e”, “ll”, “o”]

breaks xs into segments

[x1,x2…], such that p x1 xi is

True for each xi in the segment.

Step 3: Grouping Equal Words

[[“clouds”], [“hello”, “hello”], [“sky”]]

groupBy (==)

[“clouds”, “hello”, “hello”, “sky”]

Step 4: Counting Each Group

[(“clouds”,1), (“hello”, 2), (“sky”,1)]

map (ws -> (head ws, length ws))

[[“clouds”], [“hello”, “hello”], [“sky”]]

Step 5: Formatting Each Group

[“clouds: 1”, “hello: 2”, “sky: 1”]

map ((w,n) -> w ++ “: ” ++ show n)

[(“clouds”,1), (“hello”, 2), (“sky”,1)]

Step 6: Combining the Lines

“clouds: 1\nhello: 2\nsky: 1\n”

unlines

[“clouds: 1”, “hello: 2”, “sky: 1”]

clouds: 1

hello: 2

sky: 1

The Complete Definition

countWords :: String -> String

countWords = unlines

. map ((w,n)-> w++”:”++show n)

. map (ws->(head ws, length ws))

. groupBy (==)

. sort

. words

Quiz: A property of Map

prop_MapMap :: (Int -> Int) -> (Int -> Int) -> [Int] -> Bool

prop_MapMap f g xs =

map f (map g xs) == map (f . g) xs

map :: (a -> b) -> [a] -> [b]

Can you think of a property that merges

two consecutive uses of map?

The Optimized Definition

countWords :: String -> String

countWords

= unlines

. map (ws-> head ws ++ “:” ++ show(length ws))

. groupBy (==)

. sort

. words

Where Do Higher-Order Functions

Come From?
• Generalise a repeated pattern: define a

function to avoid repeating it.

• Higher-order functions let us abstract
patterns that are not exactly the same, e.g.
Use + in one place and * in another.

• Basic idea: name common code patterns, so
we can use them without repeating them.

Must I Learn All the Standard

Functions?

Yes and No…

• No, because they are just defined in Haskell.

You can reinvent any you find you need.

• Yes, because they capture very frequent

patterns; learning them lets you solve many

problems with great ease.

”Stand on the shoulders of giants!”

Lessons

• Higher-order functions take functions as parameters,
making them flexible and useful in very many
situations.

• By writing higher-order functions to capture common
patterns, we can reduce the work of programming
dramatically.

• -expressions, partial applications, function
composition and sections help us create functions to
pass as parameters, without a separate definition.

• Haskell provides many useful higher-order functions;
break problems into small parts, each of which can be
solved by an existing function.

Reading

• Chapter 9 covers higher-order functions on lists, in
a little more detail than this lecture.

• Sections 10.1 to 10.4 cover function composition,
partial application, and -expressions.

• Sections 10.5, 10.6, and 10.7 cover examples not
in the lecture -- useful to read, but not essential.

• Section 10.8 covers a larger example in the same
style as countOccurrences.

• Section 10.9 is outside the scope of this course.

