What is a "Higher Order" Function?

A function which takes another function as a parameter.
even :: Int -> Bool
even $\mathrm{n}=\mathrm{n}^{\prime}$ mod` $2==0$

Examples

map even [1, 2, 3, 4, 5] = [False, True, False, True, False]
filter even $[1,2,3,4,5]=[2,4]$

What is the Type of filter?

filter even $[1,2,3,4,5]=[2,4]$
even $::$ Int $->$ Bool
filter $::$ (Int $->$ Bool) $->$ [Int] $->$ [Int]
A function type can be
the type of an argument.
filter:: (a -> Bool) -> [a] -> [a]

Quiz: What is the Type of map?

Example

map even $[1,2,3,4,5]=[$ False, True, False, True, False]
map also has a polymorphic type -- can you write it down?

Quiz: What is the Definition of map?

Example

map even $[1,2,3,4,5]=[$ False, True, False, True, False]

```
map :: (a -> b) -> [a] -> [b]
map = ?
```


Quiz: What is the Definition of map?

Example

map even $[1,2,3,4,5]=[$ False, True, False, True, False]
map :: (a -> b) -> [a] -> [b]
$\operatorname{map} f[]=[]$
$\operatorname{map} f(x: x s)=f x: \operatorname{map} f x s$

Case Study: Summing a List

```
sum [] =0
sum (x:xs) = x + sum xs
```


General Idea

Combine the elements of a list using an operator.

Specific to Summing

The operator is + , the base case returns 0 .

Case Study: Summing a List

New Definition of sum
 New Definition of sum

sum $x s=$ foldr plus $0 x s$
where plus $x y=x+y$

orjust...
sum $\mathrm{xs}=$ foldr (+) 0 xs

Just as `fun` lets a function be used as an operator, so (op) lets an operator be used as a function.

Is this "Just Another Feature"?

 NO!!!-Higher-order functions are the "heart and soul" of functional programming!
-A higher-order function can do much more than a "first order" one, because a part of its behaviour can be controlled by the caller.
-We can replace many similarfunctions by one higherorder function, parameterised on the differences.

Case Study: Summing a List

```
sum[] =0
sum (x:xs) = x + sum xs
```

Replace 0 and + by parameters -- + by a function.

```
foldrop z[] = z
foldr op z (x:xs) = x `op` foldr op z xs
```


Applications

Combining the elements of a list is a common operation.
Now, instead of writing a recursive function, we can just use foldr!

product xs	$=$ foldr (*) $1 \times \mathrm{xs}$
and xs	$=$ foldr (\&\&) True xs
concat xs	$=$ foldr (++) [] xs
maximum (x:xs)	$=$ foldr max x xs

The operator " "." is replaced by Ψ and [] is replaced by z.

An Intuition About foldr

```
foldr op z [] = z
foldr op z (x:xs) = x `op` foldr op z xs
```


Example

```
foldrop z (a:(b:(c:[]))) = a `op` foldrop z (b:(c:[]))
                                    = a `op` (b `op` foldr op z (c:[]))
    = a `op` (b `op` (c `op` foldrop z []))
    = a `op`(b `op` (c `op`z))
```

The operator " ":" is replaced by `op", [] is replaced by z.

Quiz

What is foldr (:) [] xs

Quiz

What is
foldr (:) ys xs

What is foldr (: $:$ [] xs

Replaces ":" by ":", and [] by [] -- no change!
The result is equal to xs.

Quiz

foldr (:) ys (a:(b:(c:[])))
= a:(b:(c:ys))

The result is $\mathrm{xs}++\mathrm{ys}$!
xS $++y s=$ foldr (: $)$ ys xs

Quiz

What is

```
foldr snoc [] xs
    where snoc y ys = ys++[y]
```


λ-expressions

reverse $\mathrm{xs}=$ foldr snoc [] xs
 where snoc y ys = ys++[y]
 It's a nuisance to need to define snoc, which we only use once! $\mathrm{A} \lambda$-expression lets us define it where it is used.
 reverse $\mathrm{xs}=$ foldr $(\lambda y$ ys $->\mathrm{ys}++[y]$) $] \mathrm{xs}$

On the keyboard:
reverse xs = foldr (\y ys -> ys++[y]) [] xs

What is foldr snoc [] xs
where snoc y ys = ys++[y]
foldr snoc [] (a:(b:(c:[])))
$=a$ `snoc` (b `snoc` (c `snoc` []))

$$
=(([]++[c])++[b]++[a]
$$

The result is reverse xs!
)
> reverse xs = foldr snoc [] xs where snoc y ys = ys $++[y]$

Quiz

Generalising takeLine

```
takeLine [] = []
takeLine (x:xs)
    | x/= \\n' = x : takeLine xs
    | otherwise = []
```

```
takeWhile p [] = []
takeWhile p (x:xs)
    | p x = x : takeWhile p xs
    | otherwise = []
```


New Definition

takeLine $x s=$ takeWhile $\left(\lambda x->x /=\backslash n^{\prime}\right) x s$
or
takeLine xs = takeWhile (/='\n') xs

Defining lines

We use

- takeWhile p xs -- returns the longest prefix of xs
-- whose elements satisfy p.
- dropWhile p xs -- returns the rest of the list.

lines [] = []

lines xs = takeWhile $\left(/=1 n^{\prime}\right)$ xs :
lines (tail (dropWhile (/= $\left.{ }^{\prime} \mathrm{n}^{\prime}\right) \mathrm{xs}$))

General idea Break a list into segments whose

 elements share some property.Specific to lines The property is: "are not newlines".

Generalising lines

```
segments p [] = []
segments p xs = takeWhile p xs :
    segments p (drop 1 (dropWhile p xs)
```


Example

segments (>=0) [1,2,3,-1,4,-2,-3,5]
$=\quad[[1,2,3],[4],[],[5]]$
segments is not a standard function.

As a shorthand, an operator with one argument stands for a function of the other...

$$
\begin{array}{ll}
\text { •map (+1) }[1,2,3]=[2,3,4] & \left(\begin{array}{l}
(\mathrm{a}) \mathrm{b}) \mathrm{b}=\mathrm{axb} \\
\text { • filter }(<0)[1,-2,3]=[-2]
\end{array}\right. \\
\text { •takeWhile (0<) }[1,-2,3]=[1] &
\end{array}
$$

Note that expressions like (*2+1) are not allowed.
Write $\lambda x->x^{*} 2+1$ instead.

Quiz: Properties of takeWhile and dropWhile

takeWhile, dropWhile :: (a -> Bool) -> [a] -> [a]
Can you think of a property that connects takeWhile anddropWhile?
Hint: Think of a property that connects take and drop

Use import Text.Show.Functions
prop_TakeWhile_DropWhile p xs = takeWhile p xs ++ dropWhile p xs $==$ (xs :: [lnt]]

Quiz: Comma-Separated Lists

Many Windows programs store data in files as "comma separated lists", for example

1,2,hello,4
Define commaSep :: String \rightarrow [String] so that
commaSep "1,2, hello, 4" == ["1", "2", "hello", "4"]

Quiz: Comma-Separated Lists

Many Windows programs store data in files as "comma separated lists", for example

1,2,hello,4
Define commaSep :: String -> [String]
so that
commaSep "1,2,hello,4" == ["1", "2", "hello", " 4 "]
commaSep xs = segments (/=',') xs

Defining words

We can almost define words using segments -- but segments (not.isSpace)"a b" = ["a", "", "b"]

Function composition (f.g) $x=f(g x)$
which is not what we want -- there should be no empty words.
words xs = filter (/="") (segments (not . isSpace) xs)

Partial Applications

Haskell has a trick which lets us write down many functions easily. Consider this valid definition:

foldr was defined with
3 arguments. It's being called with 2.
What's going on?

Partial Applications

Any function may be called with fewer arguments than it was defined with.

The result is a function of the remaining arguments.

If $\quad \mathrm{f}:$:Int -> Bool -> Int -> Bool
then f 42 :: Bool-> Int -> Bool
f 42 True :: Int -> Bool
f 42 True 42 :: Bool

Partial Applications

```
sum = foldr (+) 0
```

Evaluate sum [1,2,3]
$=\{$ replacing sum by its definition $\}$ foldr (+) $0[1,2,3] \longrightarrow$ Now foldr has the
$=\{b y$ the behaviour of foldr $\}$ right number of arguments! $1+(2+(3+0))$
$=6$

Bracketing Function Calls and Types

We say function application "brackets to the left" function types "bracket to the right"

Designing with Higher-Order Functions

-Break the problem down into a series of small steps, each of which can be programmed using an existing higher-order function.
-Gradually "massage" the input closer to the desired output.
-Compose together all the massaging functions to get the result.

Step 1: Breaking Input into Words

["hello", "clouds", "hello", "sky"]

Digression: The groupBy Function

groupBy (<) $[3,2,4,3,1,5]=[[3],[2,4,3],[1,5]]$
groupBy (==) "hello" = ["h", "e", "ll", "o"]

Example: Counting Words

Input

A string representing a text containing many words. For example
"hello clouds hello sky"

Output

A string listing the words in order, along with how many times each word occurred.
clouds: 1 hello: 2 sky: 1
["hello", "clouds", "hello", "sky"]
["clouds", "hello", "hello", "sky"]

Step 3: Grouping Equal Words

["clouds", "hello", "hello", "sky"]

groupBy (==)
[["clouds"], ["hello", "hello"], ["sky"]]

Step 4: Counting Each Group

[("clouds",1), ("hello", 2), ("sky",1)]

Step 6: Combining the Lines

clouds: 1
hello: 2
sky: 1

Step 5: Formatting Each Group

["clouds: 1", "hello: 2", "sky: 1"]

The Complete Definition

```
countWords :: String -> String
countWords = unlines
    . map (\lambda(w, n)-> w++":'"++show n)
    . map (\lambdaws->(head ws, length ws))
    - groupBy (==)
    . sort
    . words
```

The Optimized Definition

countWords : : String -> String

countWords

```
= unlines
. map (\lambdaws-> head ws ++ ":` ++ show(length ws))
    - groupBy (==)
    . sort
    . words
prop_MapMap :: (Int -> Int) -> (Int -> Int) -> [Int] -> Bool

\section*{Quiz: A property of Map}
\[
\operatorname{map}::(a->b)->[a]->[b]
\]

Can you think of a property that merges two consecutive uses of map?

\section*{Where Do Higher-Order Functions Come From?}
- Generalise a repeated pattern: definea function to avoid repeating it.
- Higher-order functions let us abstract patterns that are not exactly the same, e.g. Use + in one place and * in another.
- Basic idea: name common code patterns, so we can use them without repeating them.

\section*{Lessons}
- Higher-order functions take functions as parameters, making them flexible and useful in very many situations.
- By writing higher-order functions to capture common patterns, we can reduce the work of programming dramatically.
- \(\lambda\)-expressions, partial applications, function composition and sections help us create functions to pass as parameters, without a separate definition.
- Haskell provides many useful higher-order functions; break problems into small parts, each of which can be solved by an existing function.

\section*{Must I Learn All the Standard Functions?}

\section*{Yes and No...}
- No, because they are just defined in Haskell. You can reinvent any you find you need.
- Yes, because they capture very frequent patterns; learning them lets you solve many problems with greatease.
"Stand on the shoulders of giants!"

\section*{Reading}
- Chapter 9 covers higher-order functions on lists, in a little more detail than this lecture.
- Sections 10.1 to 10.4 cover function composition, partial application, and \(\lambda\)-expressions.
- Sections 10.5, 10.6, and 10.7 cover examples not in the lecture -- useful to read, but not essential.
- Section 10.8 covers a larger example in the same style as countOccurrences.
- Section 10.9 is outside the scope of this course.```

