Functional Datastructures

Efficiency

Consider a naive reverse definition

reverse :: [a] -> [a]
reverse [] =[]
reverse (X:Xs) = reverse Xs ++ [X]

(++) :: [a] -> [a] -> [a]
[1] ++ ys = ysS t::kkmNrnany(++)caHs

(x:xs) ++ ys = x:(xs ++ ys))needed to produce all
elements of xs ++ ys?

Note: reverse and (++)

are part of the Prelude O(length xs)

Efficiency

* Reversing a list takes (length xs) calls to
reverse

« Each call to reverse costs
O(length (reverse xs)) = O(length xs)
* So reversing a list of length n requires
approx (n-1) +(n-2) + ... + 1 = O(n*n)

StepsS reverse :: [a] -> [a]
reverse [] []
reverse (X:Xs) reverse xs ++ [x]

Fast Reverse

* Quicker reverse avoids using append.
ldea: use an accumulating parameter

reverse :: [a] -> [a]
reverse xs = revInto [] xs
where revInto ys []
revinto ys (x:xs)

7 =

ysS
revinto (x:ys) xs

A helper function accumulating

parameter — it
accumulates the
answer

Data Structures

 Datatype

— A model of something that we want to represent in
our program

« Data structure
— A particular way of storing data

— How? Depending on what we want to do with the
data

« Today: one example
— Queue

What is a Queue?

Join at the back Leave at front

Examples

* Files to print

e Processes to run

* Tasks to perform

What is a Queue?

A queue contains a sequence of values. We can add elements
at the back, and remove elements from the front.

We'll implement the following operations:

empty
add
remove
front
ISEmpty ::

sQa
ca->Qa->Qa
sQa->Qa

~Qa->a

Q a -> Bool

-- an empty queue

-- add element at back

-- remove an element from front
-- Inspect the front element

-- check If the queue Is empty

First Try

data Q a = Q [a] deriving (Eq, Show)

empty = Q]

add x (Q xs) = Q (Xs++[x])
remove (Q (x:xs)) = Q Xxs

front (Q (X:xs)) = X

ISEmpty (Q XS) = null xs

Works, but slow

add x (Q xs) = Q (xs++][X])

(X:XS) ++ ys = X : (XS++YyS)

Add 1, add 2, add 3, add 4, add 5...

Time Is the square of the number of
additions

A Module

Implement the result in a module
Use as specification
Hides the internals (representation)

Allows the re-use
— By other programmers
— Of the same names

SlowQueue Module

module SlowQueue where

data Q a = Q [a] deriving (Eg, Show)

empty = Q []

add x (Q xs) = Q (xs++[x])
remove (Q (x:xs)) = Q Xxs

front (Q (x:xs)) = X

isEmpty (Q xs) = null xs

New |ldea: Store the Front and
Back Separately

o a-ibfeldfe[f]g[n]ir]

Fﬁt (0 } {Slow to/@
remove
Fast to ~
Periodically
move the
back to the
front.)

remove

New

[Fast to add

Smart Datatype

— - The front and the back
data Q a = Q -a] [a] part of the queue. J
deriving (Eqg, Show)

Invariant: front is empty only when the
back is also empty

Smart Operations

empty =Q [] []
isEmpty g = == empty
add x (Q front back) = fixQ (Q front (x:back))

front (Q (x:front) back) = x
remove (Q (x:front) back) = fixQ (Q front back)

Move the back of the queue to the
front when front becomes empty

Flipping

fixQ (Q [] back) = Q (reverse back) []
fixQ g = (

 fixQ takes one call per element

« Each element is flipped exactly once, so
— O(1) to add, O(1) to fixQ, O(1) to remove.

Wrapping it up

module Queue (Q,

//2277/émpty, add, remove,

Exports type front, 1sEmpty
Q but not the n
constructor) where

*Main> :1 Q

data Q a -- Defined at Queue.hs:11:5

*Main> front (Q [1,2] [3])

<interactive>:1:0: Not in scope: data constructor Q'

Exported Constructors

module Queue (Q(Q)

Not a good idea here: allows
/emp client to

Exports type fron * become dependent on
Internal iImplementation
Q and the P

) whe details
constructor Q - break datatype invariants

*Main> :1 Q

data Q a = Q [a] [a] -- Defined at Queue.hs:11:5
*Main> Q [] [3]

Q [] [3]

How can we test the smairt
functions?

* By using the original implementation as
a reference

 The behaviour should be "the same”
— Check results

* First version Is an abstract model that is
"obviously correct’

| ater we will see:

 How to make QuickCheck work for our
own datatypes

— We need to tell it how to generate random
values

* How to test the equivalence of the
reference and efficient implementations

— we need to add conversion functions
« How to test the intended Iinvariants

