
Functional Datastructures



Efficiency

Consider a naive reverse definition

reverse :: [a] -> [a]
reverse []     = []
reverse (x:xs) = reverse xs ++ [x]

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

How many (++) calls

needed to produce all 

elements of xs ++ ys?

O(length xs)
Note: reverse and (++) 

are part of the Prelude



Efficiency

• Reversing a list takes (length xs) calls to 

reverse

• Each call to reverse costs

O(length (reverse xs)) = O(length xs)

• So reversing a list of length n requires 

approx (n-1) +(n-2) + … + 1 = O(n*n) 

steps reverse :: [a] -> [a]
reverse []     = []
reverse (x:xs) = reverse xs ++ [x]



Fast Reverse

• Quicker reverse avoids using append. 

Idea: use an accumulating parameter

reverse :: [a] -> [a]
reverse xs = revInto [] xs

where revInto ys []     = ys
revInto ys (x:xs) = revInto (x:ys) xs

accumulating 

parameter – it 

accumulates the 

answer

A helper function



Data Structures

• Datatype

– A model of something that we want to represent in 

our program

• Data structure

– A particular way of storing data

– How? Depending on what we want to do with the 

data

• Today: one example

– Queue



What is a Queue?

Examples

• Files to print

• Processes to run

• Tasks to perform

Leave at frontJoin at the back



What is a Queue?

A queue contains a sequence of values. We can add elements 

at the back, and remove elements from the front.

We’ll implement the following operations:

empty :: Q a

add :: a -> Q a -> Q a

remove :: Q a -> Q a

front       :: Q a -> a

isEmpty :: Q a -> Bool

-- an empty queue

-- add element at back

-- remove an element from front

-- inspect the front element

-- check if the queue is empty



First Try

data Q a = Q [a] deriving (Eq, Show)

empty = Q []

add x (Q xs)          = Q (xs++[x])

remove (Q (x:xs)) = Q xs

front (Q (x:xs))     = x

isEmpty (Q xs)     = null xs



Works, but slow

add x (Q xs) = Q (xs++[x])

[]        ++ ys = ys

(x:xs) ++ ys = x : (xs++ys)

Add 1, add 2, add 3, add 4, add 5…

Time is the square of the number of 

additions

As many recursive

calls as there are 

elements in xs



A Module

• Implement the result in a module

• Use as specification

• Hides the internals (representation)

• Allows the re-use

– By other programmers

– Of the same names



SlowQueue Module

module SlowQueue where

data Q a = Q [a] deriving (Eq, Show)

empty = Q []
add x (Q xs)     = Q (xs++[x])
remove (Q (x:xs)) = Q xs
front (Q (x:xs)) = x
isEmpty (Q xs)   = null xs



New Idea: Store the Front and 

Back Separately

b c d e f g h ia jOld

Fast to

remove
Slow to add

b c d e

i h g f

a

j

New

Fast to add

Fast to 

remove Periodically

move the

back to the

front.



Smart Datatype

data Q a = Q [a] [a]

deriving (Eq, Show)

Invariant: front is empty only when the 

back is also empty

The front and the back 

part of the queue.



Move the back of the queue to the 

front when front becomes empty

Smart Operations

empty = Q [] []

isEmpty q                 = q == empty

add x (Q front back) = fixQ (Q front (x:back))

front (Q (x:front) back)  = x

remove (Q (x:front) back) = fixQ (Q front back)



Flipping

fixQ (Q [] back) = Q (reverse back) []

fixQ q           = q

• fixQ takes one call per element

• Each element is flipped exactly once, so 

– O(1) to add, O(1) to fixQ, O(1) to remove.



Wrapping it up

module Queue (Q, 

empty, add, remove,

front, isEmpty

) where

Exports type 

Q but not the 

constructor

*Main> :i Q
data Q a -- Defined at Queue.hs:11:5
*Main> front (Q [1,2] [3])
<interactive>:1:0: Not in scope: data constructor `Q'



Exported Constructors

module Queue (Q(Q), 

empty, add, remove,

front, isEmpty

) where

Exports type 

Q and the 

constructor Q

*Main> :i Q
data Q a = Q [a] [a] -- Defined at Queue.hs:11:5
*Main> Q [] [3]
Q [] [3]

Not a good idea here: allows 

client to 

• become dependent on 

internal implementation

details

• break datatype invariants



How can we test the smart 

functions?

• By using the original implementation as 

a reference

• The behaviour should be ”the same”

– Check results

• First version is an abstract model that is 

”obviously correct”



Later we will see:

• How to make QuickCheck work for our 

own datatypes

– We need to tell it how to generate random 

values

• How to test the equivalence of the 

reference and efficient implementations

– we need to add conversion functions

• How to test the intended invariants


