
1

Lists Lists: recap

• Can represent 0, 1, 2, … things
– [], [3], [”apa”,”katt”,”val”,”hund”]

• They all have the same type
– [1,3,True,”apa”] is not allowed

• The order matters
– [1,2,3] /= [3,1,2]

• Syntax
– 5 : (6 : (3 : [])) == 5 : 6 : 3 : [] == [5,6,3]

– ”apa” == [’a’,’p’,’a’] (type String = [Char])

Lists
-- how they work

Can we define Lists as a

datatype?

• Our attempt at a ”home made” list is

either:

– An empty list

– Formed by adding an element to a smaller list

• What to put on the place of the ??

data List = Empty | Add ?? List

Lists

• Add 12 (Add 3 Empty) :: List Int

• Add ”apa” (Add ”bepa” Empty) :: List String

• Haskell’s built-in lists can be thought of as
a syntactic shorthand for this datatype

data List a = Empty | Add a (List a)

A type parameter

Haskell's lists

data List a = Empty | Add a (List a)

-- psudocode for Haskell lists

data [a] = [] | a : [a]

compare with

2

More on Types

• Functions can have ”general” types:

– polymorphism

– reverse :: [a] -> [a]

– (++) :: [a] -> [a] -> [a]

• Sometimes, these types can be restricted

– Ord a => … for comparisons (<, <=, >, >=, …)

– Eq a => … for equality (==, /=)

– Num a => … for numeric operations (+, -, *, …)

Example: "Quicksort"

qsort :: Ord a => [a] -> [a]

qsort [] = []
qsort (x:xs) = qsort small ++ [x] ++ qsort big

where small = [y | y <- xs, y < x]
big = [z | z <- xs, z >= x]

qsort :: Ord a => [a] -> [a]

qsort [] = []
qsort (x:xs) = qsort small ++ [x] ++ qsort big

where small = [y | y <- xs, y < x]
big = [z | z <- xs, z >= x]

sort lists of any

type a, as long as

a has comparison
functions

Introduces

local

definitions

definitions

must be left-

aligned

list append

Some Examples from the

Standard Prelude

[Demo in class]

• reverse a list

• append two lists

• append a list of lists

• take the f irst n elements f rom a list

• drop the f irst n elements f rom a list

• "zip" two lists together

see course book p121, 126-127

http://haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html
http://haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html
http://haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html
http://haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html

