
Collections of things:

Tuples and Lists

A first taste!

Tuples

examplePair :: (Double, Bool)
examplePair = (3.14 , False)

exampleTriple :: (Bool, Int, String)
exampleTriple = (False, 42, "Answer")

exampleFunction :: (Bool, Int, String) -> Bool
exampleFunction (b, i, s) = not b && length s < i

Lists

• The “duct tape” of functional programming

• Collections of things of the same type.

– Two lists of the same type may have different

number of elements

• For any type x, [x] is the type of lists of x‟s

– e.g. [Bool] is the type of lists of Bool

Lists

• The values in [A] are either of the form

– [] , the empty list (also called nil)

– x:xs where x has type A and xs has type [A].

• Which of these are in [Bool] ?

True : [] True:False False:(False:[])

the

“head”

the “tail”

“cons”

List shorthands

• The following are all equivalent ways of
writing the list 1:(2:(3:[]))

1:2:3:[]

[1,2,3]

[1..3]

• The third is a bit special – it is really a
shorthand for an expression which builds
the list. Other examples: [„a‟..‟z‟] and [1..]

Functions over lists

• Functions over lists can be defined using

pattern matching. E.g.,

summerize :: [String] -> String
summerize [] = “None”
summerize [x] = “Only ” ++ x
summerize _ = “Several things.”

The “don‟t care” pattern

Functions over lists

• Primitive recursion is the most common

form:

doubles :: [Integer] -> [Integer]
-- doubles [3,6,12] = [6,12,24]

doubles [] = ...
doubles (x:xs) = ...

Functions over lists

• Primitive recursion is the most common
form:

• Would not write it in this way – it is such a
common pattern that we define a general
function

doubles :: [Integer] -> [Integer]
-- doubles [3,6,12] = [6,12,24]

doubles [] = []
doubles (x:xs) = (2*x) : doubles xs

map

-- map f [x1,x2,…,xn] = [f x1,f x2,…,f xn]
map f [] = ...
map f (x:xs) = ...

map

-- map f [x1,x2,…,xn] = [f x1,f x2,…,f xn]
map f [] = []
map f (x:xs) = f x : map f xs

Note: map is part of the standard Prelude - does not need to be defined

filter

Produce a list by removing all elements

which do not have a certain property from

a given list:

e.g. filter even [1..9] gives [2,4,6,8]

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs)

| p x = x : (filter p xs)
| otherwise = filter p xs

List comprehensions

• An alternative notation with the power of map
and filter is list comprehensions

Prelude> [2*n | n<- [10..12]]

[20,22,24]

Prelude>

Based on set-theory notation;used in earlier functional languages
(Hope, KRC). Popularised by Python.

the list of “2*n”,

where n is taken from

the list of integers

in the range 10 to 12

List comprehensions

• [3*n | n<- [10..12], even n]
"the list of all 3*n, where n is taken from the list of

integers from 10 to 12, and n is even".

– equivalent to:

filter even [3*n | n <- [10..12]]

map (3*) [n | n <- [10..12], even n]

map (3*) (filter even [10..12])

Further example

• This example has multiple “generators”

• Note that a generator can be any list-

producing expression (of appropriate

type), not just [a..b]-expressions.

pythag :: Int -> [(Int, Int, Int)]
pythag n = [(x,y,z) |

x <- [1..n],
y <- [x..n],
z <- [y..n],

x^2 + y^2 == z^2]

