
Lecture 8Lecture 8

Linda and Erlang

2PPHT10 – Linda

Part IPart I

Linda

3PPHT10 – Linda

Overview of Message PassingOverview of Message Passing

• One process sends a message
• Another process awaits for a message

• We will consider two dimensions of this
approach:
◦ What form of synchronisation is required
◦ What form of process naming is involved in

message passing

4PPHT10 – Linda

Communication CouplingCommunication Coupling

• Time
◦ Synchronisation in message passing

• Processes must usually exist simultaneously to
communicate

◦ Synchronous/rendezvous
◦ Asynchronous

• Space
◦ Naming
◦ Global scope for the names

• Processes, or
• Channels/operations

5PPHT10 – Linda

Decoupling – BroadcastDecoupling – Broadcast

• Communication by broadcast is decoupled
◦ In space

• Sender does not know who the receivers are, or
• How many receivers there are, or
• Whether there are any receivers at all

◦ But not in time
• Receivers must exist and act simultaneously with

the sender

6PPHT10 – Linda

Decoupling – BlackboardDecoupling – Blackboard

• Communication by blackboard is
decoupled
◦ In space

• Writer does not know who the readers are, or
• How many readers there are, or
• Whether there are any readers at all

◦ In time
• Reader can even be created after the writer dies

7PPHT10 – Linda

The Linda ModelThe Linda Model

• Origins
◦ 1983: David Gelernter
◦ General idea

• Parallel Programming =
• Computation +
• Coordination

• Based on the blackboard communication
◦ Asynchronous communication
◦ No naming – global “blackboard”
◦ Content matching

8PPHT10 – Linda

The Linda ModelThe Linda Model

• Linda
◦ Not a programming language, but
◦ A collection of operations

• Take your favorite (sequential) host language,
• Add Linda operations

◦ Library
◦ Extend the language itself

• You get a parallel/concurrent programming
language

9PPHT10 – Linda

Blackboard – Tuple SpaceBlackboard – Tuple Space

• Linda shared memory
◦ Blackboard – Tuple space
◦ Data in the space: tuples

• Tuples
◦ Typed sequences of data

• Singletons, Pairs, Triples, Quadruples, …

◦ Examples:
•(1,true), (1,2), (false,2) differently typed

•("list",1,42)

10PPHT10 – Linda

PatternsPatterns

• Patterns are used to find tuples
◦ Tuples with variables
◦ Examples

•("list", ?Index, ?Value)
•(1, ?X)

• Pattern matching examples
◦ (1, ?X) matches (1, true) to give

 X = true
◦ (1, ?X) fails to match (2, true)
◦ (1, ?X) fails to match (1, true, 3)

11PPHT10 – Linda

Communication – BlockingCommunication – Blocking

• OUT(exp1,…,expn)
◦ Evaluate the expressions exp1,…,expn and

produce a tuple T,

◦ Atomically add the tuple T to the tuple space.

• IN(P)
◦ Block until a tuple T in the tuple space

matches the pattern P,

◦ Atomically remove T from the tuple space,

◦ Assign the variables in P to values in T
according to the match.

12PPHT10 – Linda

Communication – BlockingCommunication – Blocking

• RD(P)
◦ Block until a tuple T in the tuple space

matches the pattern P,

◦ Assign the variables in P to values in T
according to the match.

◦ Like IN(P) except that the matched tuple T is
left in the tuple space

13PPHT10 – Linda

Communication – Non-blockingCommunication – Non-blocking

• Two non-blocking input/read variants
◦ INP(P) and

◦ RDP(P)
◦ Predicates that return:

•true and assign variables in P if there is a
matching tuple

•false otherwise

14PPHT10 – Linda

““Distributed” Data StructuresDistributed” Data Structures

• To promote concurrency it is natural to
use a “distributed” representation of data
structures

• The tuple space is logically shared, but
• May be physically distributed.

• What do we mean by distributed
representations of data-structures?

15PPHT10 – Linda

Example: List/VectorExample: List/Vector

• Create a three element list/vector

• Add?

OUT("list",0 ,value0);
OUT("list",1 ,value1);
OUT("list",2 ,value2);
OUT("list","tail",3);

16PPHT10 – Linda

Example: List/VectorExample: List/Vector

• Create a three element list/vector

• Add

OUT("list",0 ,value0);
OUT("list",1 ,value1);
OUT("list",2 ,value2);
OUT("list","tail",3);

void add(E element) {
 int Index;
 IN ("list","tail",?Index);
 OUT("list","tail",Index+1);
 OUT("list",Index ,element);
}

17PPHT10 – Linda

Example: Unbounded BufferExample: Unbounded Buffer

• Create an empty buffer called “buff”

• Buffer operation put

OUT("head", "buff", 0);
OUT("tail", "buff", 0);

void put(String bufName, E element) {
 int Index;
 IN ("tail", bufName, ?Index);
 OUT("tail", bufName, Index+1);
 OUT("element", bufName, Index, element);
}

18PPHT10 – Linda

Example: Unbounded BufferExample: Unbounded Buffer

• Buffer operation get

void E get(String bufName) {
 int Index;
 E Element;

 IN ("head", bufName, ?Index);
 OUT("head", bufName, Index+1);
 IN ("element", bufName, Index, ?Element);
 return Element;
}

19PPHT10 – Linda

Expressive PowerExpressive Power

• Semaphores, monitors, message passing
◦ Equally expressive
◦ Any synchronisation with await statement

• Linda vs. XXX
◦ Can we implement XXX?
◦ Can XXX implement Linda?

• Important theoretical question
• An illustrative example, but not normal practice

20PPHT10 – Linda

SemaphoresSemaphores

OUT("s");V(s);

IN("s");P(s);

for(int x=0;x<N;x++)
 OUT("s");

sem s = N

LindaLindaSemaphoreSemaphore

21PPHT10 – Linda

Expressive PowerExpressive Power

• Semaphores as Linda singletons
• Assignment 3 is for you to implement

Linda tuple space using asynchronous
message passing in Erlang

• The same expressive power
◦ Can implement any await statement
◦ Important theoretical result

⇒

22PPHT10 – Linda

Client-Server InteractionClient-Server Interaction

• Common asynchronous communication
pattern
◦ For example: a web server handles requests

for web pages from clients (web browsers)

server

client

client client

clientrequest

result

23PPHT10 – Linda

Linda’s Linda’s Client-ServerClient-Server

• Communication by “message content”

Tuple spaceTuple space

client

client client

client
request

result

server

24PPHT10 – Linda

Replicated Worker PatternReplicated Worker Pattern

• A typical programming style used in the
Linda model:
◦ Break a problem into a collection of tasks
◦ Start a team of (identical) Worker processes
◦ Each Worker takes tasks and solves them
◦ A Master process coordinates the activities

25PPHT10 – Linda

Example: NxN Matrix Example: NxN Matrix
MultiplicationMultiplication

• Master process
◦ Initialises the tuple space with rows of matrix A

and columns of B,
◦ Adds a “next job'' counter, and
◦ Collects the results.

• Worker processes
◦ Grab a job number from 0 to N∗N-1
◦ Get corresponding row + column to multiply
◦ Place the resulting number in the tuple space

26PPHT10 – Linda

Master MultiplierMaster Multiplier

process master {
 final int N = 3;
 OUT("A", 0, {1,2,3});OUT("B", 0, {1,0,1});
 OUT("A", 1, {4,5,6});OUT("B", 1, {0,1,0});
 OUT("A", 2, {7,8,9});OUT("B", 2, {2,2,0});

 OUT("Next", 0);

 for(int i=0; i<N; i++)
 for(int j=0; j<N; j++)
 IN("C", i, j, ?C);
 //Do something with C(i,j)
 }
}

27PPHT10 – Linda

Worker MultiplierWorker Multiplier

process worker((int w=0; w<nWorkers; w++)) {
 int Element; int[] Vector1, Vector2;
 IN("Next", ?Element);
 OUT("Next", Element+1);
 while(Element < N*N) {
 int i = Element / N;
 int j = Element % N;
 RD("A", i, ?Vector1);
 RD("B", j, ?Vector2);
 int x = innerProduct(Vector1, Vector2);
 OUT("C", i, j, x);
 IN("Next", ?Element);
 OUT("Next", Element+1);
}}

28PPHT10 – Linda

JavaSpacesJavaSpaces

29PPHT10 – Linda

JavaSpacesJavaSpaces

• Why tuple spaces in a Java context?
◦ Simplified approach to distributed

computation
◦ Alternative middleware to the “standard” stuff

• Remote Method Invocation (RMI)
• Enterprise Java Beans (EJB)
• Object Request Broker Architecture (CORBA)

30PPHT10 – Linda

Tuples = EntriesTuples = Entries

• The Tuple is replaced by the concept of
an Entry in JavaSpaces

• An entry is an object which
◦ Implements net.jini.space.Entry
◦ Has objects as fields

• Pattern matching uses templates
• A template is a entry

◦ Fields set to specified values, or
◦ Wildcards (?X): fields set to null

31PPHT10 – Linda

Operations on a JavaSpaceOperations on a JavaSpace

• Standard operations
◦ write: like OUT
◦ read/readIfExists: like RD/RDP
◦ take/takeIfExists: like IN/INP

• New operations
◦ notify: requests a notification that an object

matching a template is added to the space
• It will cause the requester’s notify method to be

called when a matching tuple appears

• Transactions

32PPHT10 – Linda

TransactionsTransactions

• A standard database concept
◦ Collections of operations execute atomically,
◦ Or not at all

• Example: adding to a list
◦ Either complete the whole add or roll-back

void add(E element) {
 int Index;
 IN ("list","tail",?Index);
 OUT("list","tail",Index+1);
 OUT("list",Index ,element);
}

33PPHT10 – Linda

Conclusions – LindaConclusions – Linda

• Tuple spaces provide a very simple
mechanism for parallel and distributed
computation
◦ Loose coupling
◦ Flexibility
◦ Extendibility

• Modern instances (examples)
◦ JavaSpaces (Sun), and
◦ TSpaces (IBM)

34PPHT10 – Linda

Conclusions – LindaConclusions – Linda

• Negatives?
◦ Less structured communication

• Data and structure intermixed

◦ Implementation efficiency
• Distributed space
• Distributed pattern matching

35PPHT10 – Linda

Part IIPart II

Erlang

36PPHT10 – Erlang

Erlang – LanguageErlang – Language

• Functional
• Concurrent
• Distributed
• “Soft” real-time
• OTP (fault-tolerance, hot code update…)
• Open

37PPHT10 – Erlang

Erlang – Typical ApplicationsErlang – Typical Applications

• Telecoms
◦ Switches (POTS, ATM, IP, …)
◦ GPRS
◦ SMS applications

• Internet applications (in particular chat)
◦ jabber
◦ Twitter
◦ Facebook

• Credit card clearing
• 3D modelling (Wings3D)

38PPHT10 – Erlang

History LessonHistory Lesson

• 1981 – Ericsson CSLab formed
• 1986 – Prolog “games”
• 1987 – Erlang name appears
• 1989 – Prototypes show 9–22 fold

increase in design efficiency
• 1995 – AXE-N fails after 8 years
• 1998 – AXD301 delivered
• 1998 – Erlang banned; goes open source
• 2007 – Ericsson uses Erlang for new

products

39PPHT10 – Erlang

Essence of ErlangEssence of Erlang

• A simple functional language
• Direct asynchronous message passing
• Open Telecom Platform libraries

◦ Practically “proven” programming patterns
◦ Utilities

40PPHT10 – Erlang

Data types – ConstantData types – Constant

• Numbers
◦ Integers (arbitrarily big)
◦ Floats

• Atoms
◦ start_with_a_lower_case_letter
◦ ’Anything_inside_quotes\n\09’

41PPHT10 – Erlang

Data types – CompoundData types – Compound

• Tuples
◦ {}
◦ {atom, another_atom, ‘PPxT’}
◦ {atom, {tup, 2}, {{tup}, element}}

• Lists
◦ []
◦ [65,66,67,68] = “ABCD”
◦ [1, true] and [a | b]

42PPHT10 – Erlang

Data types – CompoundData types – Compound

Allowed but not
a good

programming
practice!

• Tuples
◦ {}
◦ {atom, another_atom, ‘PPxT’}
◦ {atom, {tup, 2}, {{tup}, element}}

• Lists
◦ []
◦ [65,66,67,68] = “ABCD”
◦ [1, true] and [a | b]

43PPHT10 – Erlang

Data types – CompoundData types – Compound

• Records
◦ -record(person,
 {name = “”,
 phone = [],
 address}).

◦ X = #person{name = “Joe”, phone =
[1,1,2], address= “here”}

◦ X#person.name
◦ X#person{phone = [0,3,1,1,2,3,4]}

44PPHT10 – Erlang

Modelling Haskell dataModelling Haskell data

• data Tree a =
 Leaf a
 | Node (Tree a) (Tree a)

• edoc style “types”:
• tree(A) =
 {leaf, A}
 | {node, tree(A), tree(A)}

45PPHT10 – Erlang

VariablesVariables

• Identifires
◦ A_long_variable_name
◦ Must start with an Upper Case Letter
◦ Can store values
◦ Can be bound only once!
◦ Bound variables cannot change values

46PPHT10 – Erlang

Functions and ModulesFunctions and Modules

• Basic compilation unit is a module
◦ Module name = file name (.erl)

• Modules contain function definitions
◦ Some functions can be exported – usable

from outside of the module

-module(math_stuff).
-export([factorial/1]).

factorial(0) -> 1;
factorial(N) -> N * factorial(N-1).

47PPHT10 – Erlang

EvaluationEvaluation

factorial(3) matches N = 3 in clause 2
== 3 * factorial(3 - 1)
== 3 * factorial(2)

matches N =2 in clause 2
== 3 * 2 * factorial(2 - 1)
== 3 * 2 * factorial(1)

matches N = 1 in clause 2
== 3 * 2 * 1 * factorial(1 - 1)
== 3 * 2 * 1 * factorial(0)
== 3 * 2 * 1 * 1 (clause 1)
== 6

48PPHT10 – Erlang

Pattern MatchingPattern Matching

• area({square,Side}) -> Side*Side.

• {square, Side} matches {square, 4}
and binds 4 to variable Side

a pattern

49PPHT10 – Erlang

More Pattern MatchingMore Pattern Matching

• {B, C, D} = {10, foo, bar}
◦ Succeeds - binds B to 10, C to foo and D to
bar

• {A, A, B} = {abc, abc, foo}
◦ Succeeds - binds A to abc, B to foo

• {A, A, B} = {abc, def, 123}
◦ Fails

• [A,B,C,D] = [1,2,3]
◦ Fails

50PPHT10 – Erlang

Even More Pattern MatchingEven More Pattern Matching

• [H|T]= [1,2,3,4]
◦ Succeeds - binds H to 1, T to [2,3,4]

• [H|T] = [abc]
◦ Succeeds - binds H to abc, T to []

• [H|T] = []
◦ Fails

• {A,_, [B|_],{B}} =
{abc,23,[22,x],{22}}

◦ Succeeds - binds A = abc, B = 22

51PPHT10 – Erlang

List ExamplesList Examples

-module(list_stuff).
-export([average/1, average/2]).

average(X) -> sum(X) / len(X).
average(A, B) -> (A+B)/2.

sum([H|T]) -> H + sum(T);
sum([]) -> 0.

len([H|T]) -> 1 + len(T);
len([]) -> 0.

52PPHT10 – Erlang

Loops – Tail RecursionLoops – Tail Recursion

• Inefficient recursive definition

• Fast tail recursive version = while loop

len([H|T]) -> 1 + len(T);
len([]) -> 0.

len(List) -> len_a(List, 0).

len_a([_|T], Acc) -> len_a(T, Acc+1);
len_a([], Acc) -> Acc.

53PPHT10 – Erlang

Concurrent ProgrammingConcurrent Programming

• Based on Message Passing:
Q. What form of synchronisation?
A. Asynchronous

Q. What form of process naming?
A. Direct, asymmetric

receive anything

B

send MSG to B

A

54PPHT10 – Erlang

ProcessesProcesses

• Process = a function evaluated in a
separate thread

-module(process).
-export([start/0]).

start() ->
Pid = spawn(fun run/0),
io:format("Spawned ~p~n",[Pid]).

run() -> io:format("Hello!~n",[]).

55PPHT10 – Erlang

BIFsBIFs

• Built-in functions
◦ spawn, spawn_link, atom_to_list

• Don’t need importing
• Mostly in module called erlang
• Some have guaranteed termination

◦ These can be used in guards

56PPHT10 – Erlang

Process CreationProcess Creation

-module(echo).
-export([start/0]).

start() ->
 Pid = spawn(fun() -> loop(42) end),
 Pid ! {self(), hello},
 io:format("Sent hello.~n",[]).

%%continues

57PPHT10 – Erlang

Message PassingMessage Passing

%%continuation
loop(Number) ->
 receive
 {From, Msg} ->
 From ! {self(), Number},

 io:format(
 "Received ~p, N: ~p~n",
 [Msg, Number]),
 loop(Number+1);
 stop ->
 true
 end.

58PPHT10 – Erlang

Conclusions – ErlangConclusions – Erlang

• Functional
• Concurrent

◦ Basics

	Lecture 9
	Part I
	Overview of Message Passing
	Communication Coupling
	Decoupling – Broadcast
	Decoupling – Blackboard
	The Linda Model
	Slide 8
	Blackboard – Tuple Space
	Patterns
	Communication – Blocking
	Slide 12
	Communication – Non-blocking
	“Distributed” Data Structures
	Example: List/Vector
	Slide 16
	Example: Unbounded Buffer
	Slide 18
	Expressive Power
	Semaphores
	Slide 21
	Client-Server Interaction
	Linda’s Client-Server
	Replicated Worker Pattern
	Example: NxN Matrix Multiplication
	Master Multiplier
	Worker Multiplier
	JavaSpaces
	Slide 29
	Tuples = Entries
	Operations on a JavaSpace
	Transactions
	Conclusions – Linda
	Slide 34
	Part II
	Erlang – Language
	Erlang – Typical Applications
	History Lesson
	Essence of Erlang
	Data types – Constant
	Data types – Compound
	Slide 42
	Slide 43
	Modelling Haskell data
	Variables
	Functions and Modules
	Evaluation
	Pattern Matching
	More Pattern Matching
	Even More Pattern Matching
	List Examples
	Loops – Tail Recursion
	Concurrent Programming
	Processes
	BIFs
	Process Creation
	Message Passing
	Conclusions – Erlang

