
Detailed Design and
Implementation

Phase 4 & 5

Detailed design

During detaild design we try to refining and expanding the
system design to the extent that the design is sufficiently
complete to begin implementation

But as we know we have already started implementing
May cause architecture revision

Mandatory design issue is testability

Remainder: Design mismatches

All the way we have been using the OO paradigm
All software is not OO...!

3D graphics is built on an rendering pipeline
Relational databases are not OO!
The web is not OO
...

Have to incorporate different paradigms in one application
...???...

Optional Not covered in course!
Possible assistants can help...?

Documenting Detailed design

No separate document
Code and tests are the ultimate documentation

So please, write readable code
Adhere to standard style
Good naming!
Not to dense, use space, empty lines

Comments
Class comment: What is this? Responsibility?
Method comments: -"-

What is happening!! (not how it's done)
Variables: -"-
Don't comment the obvious!

 x = x + 1; // Add one to x

Software Testability

The degree to which a software artifact (i.e. a software
system, software module) supports testing in a given test
context

Software Testability in Course

Must be possible to test classes (modules, subsystems)
Must use JUnit 4 (not 3) framework for unit tests

Test must be automated (i.e. no human interaction, except
for one mouse-click to run...)

Corollary: Can't have dependencies of GUI
Dependencies

Few => Easy to test
Many => Cumbersome (complicated setup)

We test implementations not interfaces
Possible need to cast in tests

Candidates for Testing

Subsystems should be tested
Again: Testing implementation (not interface)

Fat model classes: Yes
Anemic model classes : Seldom
Control classes: Yes
public methods: Yes

void methods: Test side effects (state changed)
possible create methods to inspect state (not part if interface)
..or use reflection (don't change test code)

private methods, no (if in need; possible bad design)
If really need, use reflection (don't change test code)

GUI: Yes,
... more later

Implementing Testing (1)

Create separate source folder "test" (put in Subversion)
User same package hierarchy in test folder (as in src)

Possible to test
package private classes
protected methods

Again: Testing should be automated
No System.out.println(),...need humans

Possible during development of test
Possible outcome: Pass or Fail
Possible exception, parts of GUI (dialogs, popups)

Normally one JUnit test/class with...
...many test methods (not one huge method)

Implementing Testing (2)

Long names for test methods
Long name: public void selectAndCheckAllItemsForAdmin()
{...}

Fixtures: Setup for tests
Must have known state, fresh data, ...

@BeforeClass, run once before all test methods
@Before, run before every thest method

@Test, a test method to run
@Test(expected = IllegalArgumentException.class), test
method with expected exception

Testability and Code Coverage

Test should exercise major parts of (all) code
How do we know?
Use a coverage tool

In Eclipse EclEmma installed
Marks code as

run (green)
run partly (yellow)
not run (red)

Technique: Run JUnit test them coverage

Dependencies

Have UML diagrams for ocular inspection, but are we
shore?
Use a tool

JDepend checks for cyclic dependencies (and more)

Testability MoPro

We'll inspect
monopoly-3.2.ep/test (anemic)

Note: Simple fixture
TestCore
TestControl
TestDialogs
Interpreter (not finished just a sketch)

monopoly-3.2-DDD/test (fat)
Note: More complicated fixture
TestPlayer
TestSinglePlayer

Do some coverage
Check with JDepend

Detailed Design Implementation
Overview

Subsystem implementation
We have the interfaces!

Event model implementation
GUI implementation
MVC implementation
Entry/Exit
How to wire together
Exception handling
Lookups
Resources
... know you design pattern!

Subsystem Implementation 1

"In house" (code yourself) or find existing implementation
In house implementation

Standard: Facade + Factory method (DP)
Interface to subsystem delivered by factory method
See monopoly-3.2.ep-DDD/io/FileReader

Existing
... find, possible wrap using Adapter DP to match our interface

Application always references the interface of the
subsystem

Exception: The class with the Factory method

Subsystem Implementation 2

Subsystem has single responsibility
Add features by wrapping (decorator pattern)

Make it a singleton
Make it observable
...

Subsystem to Search For

Typically you don't implement subsystems for
Graphics
Sound
Data handling, XML, ...
Networking
... find somewhere!

Always look for high level
Network: Sockets, NO!

XML-RPC, RMI, ... probably better
Resources: Low level file handling, NO!

Resourcbundles, java.xml.*, ...better for some tasks

Event Model Implementation

In house implementation
Standard: Observer pattern, more to come...
Advanced: Implement "event buses" or "messaging"

Messaging for asynchronous events (message queues)
Using frameworks

Pro
Much work done
Will probably get at (very) good design (few dependencies)

Cons
Time to learn
Possible surprises (bugs)

 Frameworks for events
WELD (= CDI, Java Context and Dependency Injection)
Quick look at testweld.ep (on course page)

GUI

Primitive GUI
Monolithic (one huge frame),
Hard coded data; Positions (234,15), icons, colors, texts, ...

Advanced GUI
Modular, composed of panels in layers
Uses Layout managers
Data externalized
Possible I18N (internationalization)

GUI Testing
Automation possible but optional (no tool in course)
Possible to create semi-automated JUnit tests

Example: monopoly-3.2.ep/test/.../TestDialogs

Event Handling and Updates in GUI

State Changes and Events possible updates GUI
Simple: GUI is Observer
If complicated GUI add other "handlers" as observers

Example MoPro: DialogHandler class (non GUI, invisible)
an observer, shows dialogs in response to events/state
changes

Code to update GUI resides in GUI
In listener

before call to control/model
after call to control/model

In observer-callback method

GUI implementation techniques

Hand code... tedious, probably bad idea ...
Draw Swing components

NetBeans/Matisse
Eclipse/Jigloo
...

Build GUI from XML (a simple structured text file format)
SwiXML
Beryl XML (incl. a GUI builder)
...

In any way
Separate out the GUI construction code (JButton b = new
JButton()), from event handling/listeners
Done automatically in SwiXML

Concurrence in GUI

Swing single threaded
All updates of GUI in event dispatch thread (EDT)

Example: Incoming network (other thread) must handle over to
EDT

Use SwingUtilities.invokeLater(...)
Time consuming method calls will block GUI

Use SwingWorker to run tasks in separate thread
Also possible

Use Timer and TimerTask to run periodically in background

Observer implementation techniques

Use Java interface java.util.Observer and subclass java.util.
Observable,

Uses implementation inheritance, primitive callback
...avoid

Classes from java.beans.* package; PropertyChangeEvent,
PropertyChangeSupport and PropertyChangeListener

More fully fledged
Demo on course page

As previously demonstrated CDI/WELD

Control Implementation Techniques

Controls often use Command Pattern
Interface with single "execute"-method
Parameter passing through constructor
Example monopoly-3.2.ep/ctrl
Possible to store commands (undo!)

Often a Factory to produce controls
Possible pure static class
Example CF.java/MustSellDialog.java

Application Entry/Exit Points

Entry: Standard is (use)
A "Main"-class with

public static void main(String[] args){
 ...

Possible: Exit-class
Handling cleaning up
Calls System.exit(0)

Wiring It Togheter
Where and when to wire together the application?

Static wiring; fixed references
Dynamic wiring; changing references

Ad-hoc (non general)
A creates B creates C, ...

Creation all over!
Dependencies..?!

Centralized creation
If simple, create/wire in Main class
Else, Builder pattern or similar

Use a framework
A framework can "inject" objects into other objects
Very loose coupling
Quick look at testweld.ep, testguice.ep (on course page)

Wiring In MoPro
Builder class for model, GameBuilder

Model built outside of model
Builder class for view, GUIBuilder

Uses model builder to construct static parts of GUI
A look at monopoly-3.2-DDD.ep

Exception handling

Try to find a general pattern
Possible ExceptionHandler class

Very convenient to let all Exceptions pass through one
known location
Possible to decide later how to handle different exceptions
Possible add logging

If long chain of method calls, possible use "exception
tunneling"

Wrap checked exception in runtime exception

Lookups

Very common need for lookup
Singletons
Resource Locator

Singleton with methods to locate objects
Read only

Global maps
Enum as keys (no misspelling)
Read only

Resources

How to find/organize?
Standard: Use Resource Bundles

java.util.ResourceBundle
A map as a text file. Automatically read and converted to Java
object

ResourceBundle demo on coures page (FAQ page)

Summary

We got an idea (Monopoly)
We gathered the requirements

Scope, use cases, functional/non-functional, GUI
From the requirements we analyzed and built a model

The analysis (domain) model (class diagram)
A dynamic model of a high priority use case (sequence
diagram)

From the analysis we implemented a running use case
During system design we created the system architecture

Spaces, event bus, interfaces, subsystems, file format,..
We did detailed design, implemented and tested

Respecting the previously created design
Final: monopoly-3.2

Final Prototype

Inspection of monopoly-3.2-DDD-ep (final prototype)
Visitor design patterns for spaces

A demo run of final protoype

Hmm...

Murphy's law
Anything that can go wrong,
will go wrong ...

Finagle's Corollary
... at the worst possible
moment

Ontological indifference law

The universe is not
indifferent to intelligence, it is
actively hostile to it

