System design document for the
Monopoly project (SDD)

NOTE: This is a previous version not fully updated, doesn’t matter it’s just an example.

Contents
1 Introduction 2
1.1 Designgoals 2
1.2 Definitions, acronyms and abbreviations 2
2 System design 2
2.1 OVEIVIEW . . . oo e e 2
211 Rules 2
2.1.2 The model functionality 3
2.1.3 Valueobjects 3
2.1.4 Unique identifiers, global look-ups 4
2.1 SPACES - . . . o e 4
2.1.6 Event handling o 4
2.1.7 Internal representation of text 4
2.2 Software decomposition Lo 4
221 General 4
2.2.2 Decomposition into subsystems)
223 Layering)
2.24 Dependency analysis o Lo 6
2.3 Concurrency iSSUES ot i e 6
2.4 Persistent data managemento oo 0oL 6
2.5 Access control and securityo 6
2.6 Boundary conditionso Lo 6
3 References 6

Version: 3.5
Date 2011-03-26

Author hajo

This version overrides all previous versions.

1 Introduction

1.1 Design goals
The design must be loosely coupled to make it possible to switch GUT and/or partition

the application into a client-server architecture. The design must be testable i.e. it
should be possible to isolate parts (modules, classes) for test. For usability see RAD

1.2 Definitions, acronyms and abbreviations

All definitions and terms regarding the core Monopoly game are as defined in the refer-
ences section.

e GUI, graphical user interface.
e Java, platform independent programming language.

e JRE, the Java Run time Environment. Additional software needed to run an Java
application.

e Host, a computer where the game will run.
e Round, one complete game ending in a winner or possible canceled.

e Turn, the turn for each player. The player can only act during his or her turn (roll
dices, buy, sell, etc.). Thou, the player can be affected during other players turns
(i.e. pay to actual player, etc.)

e Resources (for players), the total value of the properties, buildings and cash of a
single player. A player is bankruptcy when he or she has no more resources.

e MVC, a way to partition an application with a GUI into distinct parts avoiding a
mixture of GUI-code, application code and data spread all over.

2 System design

2.1 Overview

The application will use a modified MVC model. We’ll not use separate control objects
instead we use toplevel domain classes as controls.

2.1.1 Rules

The rules of the game could vary. This could be handled by different implementations
of affected classes (subclasses). Yet, here we have chosen a different approach. All rules
have been re-factored to a Rules class. Model classes delegates the rules-dependent parts
to the Rules class.

In this way the rules also can easily be used to enable/disable components in the GUI.

O PACKAGE CORE

|Game

setPlayers ~———_ _
setRules N W
killPlayer
chanceCommunity
endTurn

getPlayer: IFlayer
getRules: IRules

R Rules
O
IRUI
ules Role -
//
O Oyn e

IPlayer : | Player BOEII
move - 7
addincome_ _ -~~~ ;
withdraw S spaT'
buyProperty L f
sellProperty ’ ApstractSpace
buyBuilding / ownse x
sellBuilding \
isinjail 1
freeFrom)ail ! | Property | | NonPropertyl
1

goTolail

data: PlayerData zl}‘ zl}‘
[Touang o e | [e]

Figure 1: Model and functionality (interfaces)

2.1.2 The model functionality

The models functionality will be exposed by the interface IGame. Run time an unique
implementation of the interface will be globally accessible to the rest of the application.
To avoid a very large and diverse interface the functionality will be split into (sub)
interfaces. 1Game will be the top level interface acting as an entry to other interfaces
(TPlayer and TRules) see Figure.

2.1.3 Value objects

The model classes expose functionality. This is expressed as interfaces. If the application
needs the functionality it call methods in the interface. This is quite different from when
the application just need the core data of the object (for example to display in GUI). The
design separates the functionality aspect and the data aspect. The model class Player
has a matching (close to) immutable data class PlayerData containing the pure data.
PlayerData objects are used when sending data between GUI and model.

2.1.4 Unique identifiers, global look-ups

We will not use any globally unique identifiers for any entity. There will be no look ups
from anywhere in the application (objects will be directly connected or accessible without
an identifier). Example: The spaces-objects will not be stored in any global accessible
data structure to be looked up. They will be directly connected to interacting objects
(GUI, etc.). See also Spaces.

2.1.5 Spaces

To have a uniform handling of spaces (possible configurable), all kinds of spaces are kept
in a single list. The ordering of the spaces is determined by the ordering of the list. This
will make it easy to create different views of the spaces (just traverse list and create a
view for each space).

2.1.6 Event handling

Many events, state changing or not, can happen during the play (new player, dices equal,
go to jail, etc.). A need for a flexible event handling is evident. If this is done at an
“individual” level i.e. each receiver and sender connects, we possible end up with a hard
to understand web of connections (also possible many receivers for one event/sender).
How and when should connections be set? Also, during testing of the model we possible
would like to disable the event handling.

To solve the above we decide to develop an “event-bus”. All connections of senders/receivers
and transmitting of evens is handled by the event-bus.

The connections could be setup at application start for static parts. Dynamic parts
must have means to connect to the bus at any time.

2.1.7 Internal representation of text

All texts should be localizable. Therefore internally all objects will use language in-
dependent keys for the actual text. Using the key the object can retrieve the actual
text.

2.2 Software decomposition

2.2.1 General

The application is decomposed into the following modules, see Figure 2.

view, is the top level package for all GUI related classes including the main window.

view.details, details pop-ups for the spaces (showing detailed info about some spe-
cific space).

view.dialog, dialogs shown as response to some event.

Main is the application entry class.

view |

view.details| view.dialoq|
No control part.
All logic in model
1y 1
[Y I
1
: N\ event' W
Application _ Main | ! \\
ertry point : N
[1 \ M
1 | :
1
: : core | 1
1
?”}I \:/ 7 space'

_ - Global read only AN
-

-7 constants' ;"r

Figure 2: High level design

e event, classes related to event handling.

e build, classes related to the building of the model.

e core, the OO-model

e core.space, all spaces on the OO-model

e io, file handling

e util, general utilities.

e constants, application global constants.

2.2.2 Decomposition into subsystems

The only subsystem is the file handling in package io (not a unified subsystem, just

clagses handling i0).

2.2.3 Layering

The layering is as indicated in Figure (missing) .

figure.

Higher layers are at the top of the

2.2.4 Dependency analysis

Dependencies are as shown in Figure (missing). There are no circular dependencies except
between core and core.spaces (no problem since this is just a administrative separation
of classes representing spaces).

2.3 Concurrency issues

NA. This is a single threaded application. Everything will be handled by the Swing event
thread. For possible increased response there could be background threads. This will
not raise any concurrency issues.

2.4 Persistent data management

All persistent data will be stored in flat test files (format, see APPENDIX). The files
will be;

e A file for spaces. The ordering of the spaces is used as the internal (implicit)
ordering for the spaces-objects. This ordering will be directly reflected in the GUI.
See further directions in RAD.

e Localization files containing entries (texts) for the text keys in the application.

2.5 Access control and security

NA

2.6 Boundary conditions

NA. Application launched and exited as normal desktop application (scripts).

3 References

1. Monopoly game: http://en.wikipedia.org/wiki/Monopoly game

2. MVC, see http://en.wikipedia.org/wiki/Model-view-controller

APPENDIX

File formats

(and more, missing, U do...)

