Detailed Design and

Implementation
Phase 4 & 5

GOTEBORGS UNIVERSITET




Detailed design

e During detaild design we try to refining and expanding the
system design to the extent that the design is sufficiently

complete to begin implementation
o But as we know we have already started implementing
o May cause architecture revision

e Mandatory design issue is testability

(®%)) GOTEBORGS UNIVERSITET




Remainder: Design mismatches

e All the way we have been using the OO paradigm
e All software is not OO...!

o 3D graphics is built on an rendering pipeline

o Relational databases are not OQO!

o The web is not OO

O ...
e Have to incorporate different paradigms in one application
0..7277...

e Optional Not covered in course!
o Possible assistants can help...?

(®%)) GOTEBORGS UNIVERSITET




Documenting Detailed design

e No separate document

e Code and tests are the ultimate documentation
o So please, write readable code
o Adhere to standard style
o Good naming!
o Not to dense, use space, empty lines

e Comments
o Class comment: What is this”? Responsibility?

o Method comments: -"-
= \What is happening!! (not how it's done)

o Variables: ="'~

o Don't comment the obvious!
x=x+1; // Add one to x

(®%)) GOTEBORGS UNIVERSITET



Software Testability

e The degree to which a software artifact (i.e. a software
system, software module) supports testing in a given test
context

GOTEBORGS UNIVERSITET




Software Testability in Course

e Must be possible to test classes (modules, subsystems)
o Must use JUnit 4 (not 3) framework for unit tests
e Test must be automated (i.e. no human interaction, except
for one mouse-click to run...)
o Corollary: Can't have dependencies of GUI
e Dependencies
o Few => Easy to test
o Many => Cumbersome (complicated setup)
e \We test implementations not interfaces
o Possible need to cast in tests

(®%)) GOTEBORGS UNIVERSITET




Candidates for Testing

e Subsystems should be tested
o Again: Testing implementation (not interface)

e Fat model classes: Yes

e Anemic model classes : Seldom
e Control classes: Yes

e public methods: Yes

o void methods: Test side effects (state changed)
m possible create methods to inspect state (not part if interface)
m ..or use reflection (don't change test code)

e private methods, no (if in need; possible bad design)
o If really need, use reflection (don't change test code)

e GUI: Yes,
o ... more later

(®%)) GOTEBORGS UNIVERSITET




Implementing Testing (1)

e Create separate source folder "test" (put in Subversion)

e User same package hierarchy in test folder (as in src)
o Possible to test
m package private classes
m protected methods
e Again: Testing should be automated
o No System.out.printin(),...need humans
m Possible during development of test
o Possible outcome: Pass or Fail

o Possible exception, parts of GUI (dialogs, popups)
e Normally one JUnit test/class with...
o ...many test methods (not one huge method)

(®%)) GOTEBORGS UNIVERSITET




Implementing Testing (2)

e Long names for test methods
o Long name: public void selectAndCheckAllltemsForAdmin()
{...}
e Fixtures: Setup for tests

o Must have known state, fresh data, ...
m @BeforeClass, run once before all test methods
m @Before, run before every thest method

o @Test, a test method to run
o @Test(expected = lllegalArgumentException.class), test
method with expected exception

(®%)) GOTEBORGS UNIVERSITET




Testability and Code Coverage

e Test should exercise major parts of (all) code
e How do we know?

e Use a coverage tool
o In Eclipse EclEmma installed
o Marks code as
m run (green)

m run partly (yellow)
m not run (red)

e Technique: Run JUnit test them coverage

(®%) GOTEBORGS UNIVERSITET




Dependencies

e Have UML diagrams for ocular inspection, but are we
shore”?
e Use a tool
o JDepend checks for cyclic dependencies (and more)

GOTEBORGS UNIVERSITET




Testability MoPro

e We'll inspect

o monopoly-3.2.ep/test (anemic)
m Note: Simple fixture
m TestCore
m [estControl
m [estDialogs
m Interpreter (not finished just a sketch)

o monopoly-3.2-DDD/test (fat)

m Note: More complicated fixture
m [estPlayer
m TestSinglePlayer

e Do some coverage
e Check with JDepend

(®%) GOTEBORGS UNIVERSITET



Detailed Design Implementation
Overview

e Subsystem implementation
o We have the interfaces!

e Event model implementation
e GUI implementation

e MVC implementation

e Entry/Exit

e How to wire together

e Exception handling

e Lookups

e Resources

e ... know you design pattern!

(®%)) GOTEBORGS UNIVERSITET




Subsystem Implementation 1

e "In house" (code yourself) or find existing implementation

o In house implementation
m Standard: Facade + Factory method (DP)
m Interface to subsystem delivered by factory method
m See monopoly-3.2.ep-DDD/io/FileReader

o Existing
m ... find, possible wrap using Adapter DP to match our interface

e Application always references the interface of the

subsystem
o Exception: The class with the Factory method

(®%)) GOTEBORGS UNIVERSITET



Subsystem Implementation 2

e Subsystem has single responsibility

e Add features by wrapping (decorator pattern)
o Make it a singleton
o Make it observable

O ...

Application

MyObservableSubsystem

MySubsystem

— e . e e

5 GOTEBORGS UNIVERSITET



Subsystem to Search For

e Typically you don't implement subsystems for
o Graphics
o Sound
o Data handling, XML, ...
o Networking
o ... find somewhere!

e Always look for high level
o Network: Sockets, NO!
m XML-RPC, RMI, ... probably better
o Resources: Low level file handling, NO!
m Resourcbundles, java.xml.*, ...better for some tasks

(®%)) GOTEBORGS UNIVERSITET



Event Model Implementation

e In house implementation
o Standard: Observer pattern, more to come...
o Advanced: Implement "event buses" or "messaging"
m Messaging for asynchronous events (message queues)
e Using frameworks

o Pro
m Much work done
m Will probably get at (very) good design (few dependencies)

o Cons
m [ime to learn
m Possible surprises (bugs)
e Frameworks for events
o WELD (= CDI, Java Context and Dependency Injection)
o Quick look at testweld.ep (on course page)

(®%)) GOTEBORGS UNIVERSITET



GUI

e Primitive GUI
o Monolithic (one huge frame),
o Hard coded data; Positions (234,15), icons, colors, texts, ...

e Advanced GUI
o Modular, composed of panels in layers
o Uses Layout managers
o Data externalized
o Possible [18N (internationalization)

e GUI Testing

o Automation possible but optional (no tool in course)

o Possible to create semi-automated JUnit tests
m Example: monopoly-3.2.ep/test/.../TestDialogs

(®%)) GOTEBORGS UNIVERSITET




Event Handling and Updates in GUI

e State Changes and Events possible updates GUI
o Simple: GUI is Observer
o If complicated GUI add other "handlers" as observers
m Example MoPro: DialogHandler class (non GUI, invisible)
an observer, shows dialogs in response to events/state
changes

e Code to update GUI resides in GUI

o In listener
m before call to control/model
m after call to control/model

o In observer-callback method

(®%)) GOTEBORGS UNIVERSITET



GUI implementation techniques

e Hand code... tedious, probably bad idea ...

e Draw Swing components
o NetBeans/Matisse
o Eclipse/Jigloo
O

e Build GUI from XML (a simple structured text file format)
o SwiXML
o Beryl XML (incl. a GUI builder)

O ...
e [n any way
o Separate out the GUI construction code (JButton b = new
JButton()), from event handling/listeners
o Done automatically in SwiXML

(®%)) GOTEBORGS UNIVERSITET




Concurrence in GUI

e Swing single threaded

e All updates of GUI in event dispatch thread (EDT)

o Example: Incoming network (other thread) must handle over to
EDT
m Use SwingUtilities.invokeLater(...)
e Time consuming method calls will block GUI
o Use SwingWorker to run tasks in separate thread

e Also possible
o Use Timer and TimerTask to run periodically in background

(®%)) GOTEBORGS UNIVERSITET




Observer implementation techniques

e Use Java interface java.util.Observer and subclass java.util.

Observable,
o Uses implementation inheritance, primitive callback
o ...avoid
e Classes from java.beans.” package; PropertyChangeEvent,
PropertyChangeSupport and PropertyChangeListener
o More fully fledged
o Demo on course page

e As previously demonstrated CDI/WELD

(®%)) GOTEBORGS UNIVERSITET




Control Implementation Techniques

e Controls often use Command Pattern
o Interface with single "execute"-method
o Parameter passing through constructor
o Example monopoly-3.2.ep/ctrl
o Possible to store commands (undo!)

e Often a Factory to produce controls
o Possible pure static class
o Example CF.java/MustSellDialog.java

(®%)) GOTEBORGS UNIVERSITET




Application Entry/Exit Points

e Entry: Standard is (use)
o A "Main"-class with
m public static void main(String[] args){

e Possible: Exit-class
o Handling cleaning up
o Calls System.exit(0)

GOTEBORGS UNIVERSITET




Wiring It Togheter

e \Where and when to wire together the application?
o Static wiring; fixed references
o Dynamic wiring; changing references

e Ad-hoc (non general)

o A creates B creates C, ...
m Creation all over!
m Dependencies..?!

e Centralized creation
o If simple, create/wire in Main class
o Else, Builder pattern or similar
e Use a framework
o A framework can "inject" objects into other objects
o Very loose coupling
o Quick look at testweld.ep, testguice.ep (on course page)

(®%)) GOTEBORGS UNIVERSITET




Wiring In MoPro

e Builder class for model, GameBuilder

o Model built outside of model
e Builder class for view, GUIBuilder

o Uses model builder to construct static parts of GUI
e A look at monopoly-3.2-DDD.ep

GOTEBORGS UNIVERSITET




Exception handling

e Try to find a general pattern

e Possible ExceptionHandler class
o Very convenient to let all Exceptions pass through one
known location
o Possible to decide later how to handle different exceptions
o Possible add logging
e If long chain of method calls, possible use "exception

tunneling”
o Wrap checked exception in runtime exception

(®%)) GOTEBORGS UNIVERSITET




Lookups

e Very common need for lookup
o Singletons

o Resource Locator
m Singleton with methods to locate objects
m Read only

o Global maps
m Enum as keys (no misspelling)
m Read only

GOTEBORGS UNIVERSITET




Resources

e How to find/organize?
o Standard: Use Resource Bundles
m java.util.ResourceBundle
m A map as a text file. Automatically read and converted to Java
object
o ResourceBundle demo on coures page (FAQ page)

GOTEBORGS UNIVERSITET




Summary

e \We got an idea (Monopoly)
e \We gathered the requirements
o Scope, use cases, functional/non-functional, GUI

e From the requirements we analyzed and built a model
o The analysis (domain) model (class diagram)
o A dynamic model of a high priority use case (sequence
diagram)
e From the analysis we implemented a running use case
e During system design we created the system architecture
o Spaces, event bus, interfaces, subsystems, file format,..

e \We did detailed design, implemented and tested
o Respecting the previously created design

e Final: monopoly-3.2

é% GOTEBORGS UNIVERSITET




Final Prototype

e Inspection of monopoly-3.2-DDD-ep (final prototype)
o Visitor design patterns for spaces

e A demo run of final protoype

GOTEBORGS UNIVERSITET




Hmm...

CHALMERS

m 1k ] _| -
il Fer prbed

pire o) Ly Mel P b ey
{4 gl in®

e Murphy's law
o Anything that can go wrong,
will go wrong ...
e Finagle's Corollary
o ... at the worst possible
moment

= __ e Ontological indifference law

o The universe is not
indifferent to intelligence, it is
actively hostile to it

:z,_‘;z GOTEBORGS UNIVERSITET



