
System Design

Phase 3

So far...

Requirement elicitation, done
Have the use cases, preliminary functional/non-
functional requirements, GUI

Analysis, done
Have the preliminary analysis model

First running increment, under way...

System design

During system design we try to create the overall structure
Partitioning (divide) the problem and the system to be built
into discrete pieces
Create interfaces between these pieces
Manage overall structure and flow
Interface the system to its environment
What we get is the system architecture (general: Software
architecture)

This is not a well understood topic

The distinction between design and architecture is blurred. In this
course architecture is higher level than design

Software architecture

The software architecture defines the non-functional
requirements and the environment of the system

During the next phase, "detailed design", we define how to
deliver the functional behavior within the architectural rules

Architecture is important because it;
Controls complexity
Enforces best practices
Gives consistency and uniformity
Increases predictability
Enables re-use.

The Impact of Architecture

Points of Variation

Try to identify what can (will probably) change
Prepare for change but don't "over-engineer"
Possible points

GUI
Rules (Business, Games?)
Input/Output
Data formats
...

Top-down or Bottom-up?

Are we working top-down or bottom-up?
Analysis model is bottom-up (i.e starting with the small pieces,
the details...)

But shouldn't we think top down?
Starting with the over all picture (high abstraction)

Answer: OOAD (Object oriented analysis and design) is both
From now (and for a while) we think top-down but...
...have to move up/down between abstraction levels

If stuck high-level, imagine how you would like the code to look
If stuck low-level, imagine the overall model of this

Some System Design Principles

There are many, a few...
Keep it small and simple (KISS)
Everything has one well defined responsibility
(Single responsibility principle)
Minimize side effects (low coupling)
Minimize dependencies (low coupling)

Subsystems as independent as possible
No circular dependencies

Keep complexity inside a module (high cohesion)
Keep high rates of information exchange inside a module (high
cohesion)
State exists inside modules (low coupling)
Use open standards

...typically easy to state, hard to achieve

Documenting System Design

The System Design Document (SDD)
SDD Template on course page
Again: Not everything is applicable,

 If not put a "NA" in the section

UML for System Design

Deployment diagram (left)
Package diagram (right)
Also: Class diagrams myapp.jar

System Design Overview

Design goals
Global design decisions
Software decomposition (the pieces)

Tiers, subsystems, interfaces
Layering
Communication
Dependency analysis
Persistency, storing data, data formats
Concurrency issues
Security
Boundary conditions; Start, stop, errors
Selecting platform, done, (Java SE 1.6)

Design Goals

Input from RAD (non-functional)
Remainder:

Reliability, NA (not applicable)
Fault tolerant, possible...
Security, possible "roles", ...
Modifiability, to some extent, costs time..
Performance, probably NA
Portability, NA
Usability, probably ...
Testability (high level, yes, low level later, yes)
...

Global design decisions

Decisions affecting "everything"
Distributed application (optional)
Globally unique id's
Global data structures (accessible globally)
MVC model, done
Life cycles of objects
Interoperability requirements
Communication (also inside single application)
...

Design Goals and Global Decisions for
MoPro

Design goals
Inspect SDD section 1.1

Some global decisions
Inspect monopoly-3.2.ep/doc
Global design decision: Spaces

Rationale: It's a static setup defined at program start. Easy to
handle with all spaces in a single list (can build Spaces and GUI
from datafile)

Decomposition

Finding the pieces
Distributed applications (optional)
MVC
Analysis model
Subsystems

Interfaces!.. to be continued...

Distributed applications (1) (Optional)

Partitioning Into Tiers (separate applications)
Typically client/server

Parts of analysis model probably shared
Where to put it?

Distributed applications (2) (Optional)

Interfaces
The important design decisions! What would we like to do?
Exact implementation is a detail, keep it open...

MVC

Have the pieces
Packages in Java

The interfaces
View implements some observer interface
Controls often use a common simple interface, more later...
Model...?? ..next slide...

Interface(s) to Analysis Model

Anemic model
Analysis classes act as data, used as parameters and/or return
values, normally no interfaces for model object
Controls uses simple interface(s) to retrieve model objects and
possible act on

Fat model
Model objects with much functionality
Expose functionality through interfaces
Keep as much as possible inside model, just expose what's
needed!

Again: Possible use a mixture

MoPro Interfaces to Analysis Model

Comparing monopoly-3.2.ep (anemic) and monopoly-3.2-
DDD.ep (fat)
Anemic

One simple interface IGame
Fat

Objects exposing functionality to GUI have interfaces, IGame,
IPlayer, IRules (other interfaces for technical reasons used by
Visitor-pattern, possible more later...)
The data-parts (the pure data) of the model objects as "value
objects"

Sent from/to GUI

Partition Into Subsystems

Which are the high level subsystems?
Vague name code smell => low cohesion

Another UML symbol

Some Typical Subsystem

Persistency
Printing
Communication
Rule systems (business/game rules)
Engines, simulation engine
Processors (text formatter, spell checker)
Security, authorization module
Mappers, mapping between formats

Subsystem Interfaces

Once again: The interfaces are the important design
decisions, exact implementation is a detail!.
Example: IPersistency

Interface to storage system
1. What would you like to do?
2. Implementation: Flat files, serialization, XML, real database

Layering

High level abstraction subsystem uses low level
Dependencies going towards lower level
Lowest abstraction layer often uses primitive data

Layers calls each other via interfaces
Layering inside subsystem possible

Layering Example

File handling subsystem
(String)

Map handling subsystem
(Position, Obstacle)

Primitive data

Objects

Navigation system (Map) High level
ObjectsUses

Uses

Layering and MVC

Dependencies!

Communication

Between applications (client/server)
Inside application
Synchronous

Blocking method call, like a telephone call
Asynchronous

Method starts thread, and returns (aka messaging, like sending
a letter)

Communication in MoPro

State Changes
The state of the model has changed
Example: A player buys a street, set owner for street => model
state changed

Events
Something happens
Example: Player gets equal dices. No state change, an "event"
the game must handle

Example : The EventBus
Rationale: Very many state changes/events, observers
connected in many ways also dynamic. Centralize it.
See monopoly-3.2.ep/doc, event.EventBus, class Player and
GUIBuilder for use

Dependency Analysis

Low coupling is a central quality aspect of software
Must keep dependencies under control

At system design: Inspect UML or other to get an initial view
Later: Use tools continuously (JDepend, others...) to check.

If needed re-factor.

 Persistency And Concurrency

Persistent data
Data that outlives the application execution

Example: Highscore list
Possible file format?
Possible have to translate between objects and other format

Concurrency
Distributed applications inherently concurrent
Should the subsystem be thread safe?
Note: ConcurrentHashMap in MoPro (EventBus)

Security And Boundary Conditions

Security
Should user login?
Roles?

Boundary conditions
How to start and stop

Usually a shell script or bat file
Stop, what will happen...(probably trivial)

Exception handling

Leftovers

Some classes will not fit in a subsystems
Helper classes
Possible utils-package

System Design for MoPro

A final look at the SDD
And a quick demorun of monopoly-2.0.ep

Buy/Sell property use cases
EventBus
More GUI, disable/enable

Hmm...

