
Software Development Overview

Joachim von Hacht



Software Development Is ...

... non-trivial! 

... problem solving 

... a young engineering discipline
 Somewhat of an art 

...in between very informal (dynamic/chaotic)

...short of mathematical tools (formulas)

...normally a group task 

...highly dependent on communication
 
To handle the complexity a software development process is 
used (opposite: "Happy hacking")



Software development process

... is a framework that is used to structure, plan, and control 
the process of developing an program (system).



Current Situation

Many attempts have been made to... 
...developing processes (aka methodologies)
...define the activities (tasks)
...developing "best practices" 
...developing tools
...

... but still there's no "Silver Bullet" 
Albeit, many impressing results... 



 Process Philosophies

Big design up front (BDUF), heavy process
Everything is specified before starting to implement (the 
traditional engineering approach)
Pros: Will possible save time later on
Cons: Hard to handle changes (design obsolete before we 
even begin)

Agile development, lightweight process
Build incrementally (in small steps) and learn
Pros:  Quick adaption to changes/problems 
Cons: Insufficient design and documentation (missing general 
aspects of the problem)

... and many others
See Wikipedia for a list
Latest hype: Scrum   



Philosophy In Course

We use a basic agile process
There should always be something to run (after a short start 
period)
We'll build incrementally (adding functionality, etc. ) 
= iterative development
We test continuously

Daily build and smoke = The software should be built and the 
tests run after every workday

In between we re-factor the code base
No new functionality but a better structure 

Small design up front
We'll have some code to run
Try to learn from it and define a basic design before 
implementing



Process Phases

Requirement Elicitation
What are we going to build? 

Analysis
Build an model of it. 

System design
Use previous steps to create a high level design of a solution 

Detailed design
Refine/extend/transform system design to a more detailed 
solution. 

Implementation
Implement it. 

                                    

This has nothing 
with computers 
or programming 
to do

Not strictly ordered. 
Have to do "loops", work 
in parallel, revise, etc.



Iterative Development (real life version)

One iteration all phases top-down

A primitive but running application 
with very limited functionality 

Not in this course

This iteration has much more 
functionality



Iterative Development (course version)

Details see road map on course page

Process Outline (left to right)



Software Release Cycle

Course goal

Normally you 
will not be 
able to 
present a GA 
application



Programming paradigms

Fundamental style of computer programming
Functional: Program is a function
Structured: Programs is a collection of subroutines
Object oriented: Program is a model
...others...

We use the OO style
Some claimed benefits

The problem is composed of interacting entities (objects), not 
functions or subroutines. Mental picture and problem match.
It's a 1:1 mapping between problem and solutions, possible to use 
the same concepts from problem to code
Traceability, possible to trace the origin of the code all way back 
to problem.
Technical benefits compared to structured programming



Software Development and 
Communication

Effective communication is a fundamental requirement for 
software development.



Software Development Documentation

The fundamental issue is communication
Documentation should be concise: overviews/roadmaps are 
generally preferred over detailed documentation
Documentation is as much a part of the system as the 
source code
Document stable things, not speculative things
The benefit of having documentation must be greater than 
the cost of creating and maintaining it
Developers rarely trust the documentation, particularly 
detailed documentation because it's usually out of sync with 
the code
...



Communication and Documentation in 
Course

Find a room with a whiteboard and gather
Don't spread the group!

Use documentation to communicate between members
Document with a Purpose...

Really try to identify crucial points for understanding
Define important terms 

..it's not the size
With high quality source code and a test suite to back it up 
you need a lot less system documentation

More later...
Templates on course page



Organizing Software Development

Issue tracker
Possible use //TODO in Eclipse
Better: Google code (or similar)

Version handling (for everything), Apache Subversion (svn)

svn 
commands, 
written on 
command line 
(also a plugin 
for Eclipse)



Hmmm



Summary

We will try to use a basic (agile) process as a guide during 
project
The process has 5 steps

Each step has a few tasks, more later...
After first 2 steps there should be something to run 

Process not strictly ordered



Checklist week 1

Form a group 
Select a project and name it
Mail group data to hajo@chalmers.se (see Course PM)
Set up project site (visit workshop Tuesday)
First group meeting Thursday (schedule on course page)

Start working on "use cases"... to be continued...


