System Design

Phase 3

GOTEBORGS UNIVERSITET

So far...

e Requirement elicitation, done
o Have the use cases, preliminary functional/non-
functional requirements, GUI
e Analysis, done
o Have the preliminary analysis model
e First running increment, under way...

‘ T]
week

Requirement %ystgm Implementation
: esign
Analysis Detailed
design
WE'RE HERE!

GOTEBORGS UNIVERSITET

System design

e During system design we try to create the overall structure

o Partitioning (divide) the problem and the system to be built
Into discrete pieces

o Create interfaces between these pieces

o Manage overall structure and flow

o Interface the system to its environment

o What we get is the system architecture (general: Software
architecture)

e This is not a well understood topic

The distinction between design and architecture is blurred. In this
course architecture is higher level than design

(®%)) GOTEBORGS UNIVERSITET

Software architecture

e | he software architecture defines the non-functional

requirements and the environment of the system
o During the next phase, "detailed design"”, we define how to
deliver the functional behavior within the architectural rules

e Architecture is important because it;
o Controls complexity
o Enforces best practices
o Gives consistency and uniformity
o Increases predictability
o Enables re-use.

(®%)) GOTEBORGS UNIVERSITET

Application size

The Impact of Architecture

Bad

A architechture

I
I
I

I

Good
architecture

PR TS SRR TR TERR O SRRR O RRR TRRR SRR S

-

L
3

-——————————————>

(®%) GOTEBORGS UNIVERSITET

Points of Variation

e Try to identify what can (will probably) change
e Prepare for change but don't "over-engineer"
e Possible points

o GUI

o Rules (Business, Games?)

o Input/Output

o Data formats

O ...

GOTEBORGS UNIVERSITET

Top-down or Bottom-up?

e Are we working top-down or bottom-up?
o Analysis model is bottom-up (i.e starting with the small pieces,
the details...)

e But shouldn't we think top down??
o Starting with the over all picture (high abstraction)

e Answer: OOAD (Object oriented analysis and design) is both
o From now (and for a while) we think top-down but...

o ...have to move up/down between abstraction levels
m If stuck high-level, imagine how you would like the code to look
m If stuck low-level, imagine the overall model of this

(®%)) GOTEBORGS UNIVERSITET

Some System Design Principles

e There are many, a few...
o Keep it small and simple (KISS)
o Everything has one well defined responsibility
(Single responsibility principle)
o Minimize side effects (low coupling)

o Minimize dependencies (low coupling)
m Subsystems as independent as possible
m No circular dependencies

o Keep complexity inside a module (high cohesion)

o Keep high rates of information exchange inside a module (high
cohesion)

o State exists inside modules (low coupling)

o Use open standards

e ...typically easy to state, hard to achieve

(®%)) GOTEBORGS UNIVERSITET

Documenting System Design

e The System Design Document (SDD)
o SDD Template on course page

o Again: Not everything is applicable,
m If not put a "NA" in the section

GOTEBORGS UNIVERSITET

UML for System Design

e Deployment diagram (left)
e Package diagram (right)
e Also: Class diagrams myapp.jar

edu.chl.hajo

<<device>>
PC

<<agrtifact>>
Win/M ac/Lin

<<artifact>>
myapp.jar

X

<<agrtifact>>
jre 1.6

| view

System Design Overview

e Design goals
e Global design decisions

e Software decomposition (the pieces)
o Tiers, subsystems, interfaces

e Layering

e Communication

e Dependency analysis

e Persistency, storing data, data formats

e Concurrency issues

e Security

e Boundary conditions; Start, stop, errors
e Selecting platform, done, (Java SE 1.6)

(®%)) GOTEBORGS UNIVERSITET

Design Goals

e Input from RAD (non-functional)

e Remainder:
o Reliability, NA (not applicable)
o Fault tolerant, possible...
o Security, possible "roles", ...
o Modifiability, to some extent, costs time..
o Performance, probably NA
o Portability, NA
o Usability, probably ...
o Testability (high level, yes, low level later, yes)

(®%) GOTEBORGS UNIVERSITET

Global design decisions

e Decisions affecting "everything"
o Distributed application (optional)
o Globally unique id's
o Global data structures (accessible globally)
o MVC model, done
o Life cycles of objects
o Interoperability requirements
o Communication (also inside single application)

O ...

(®%) GOTEBORGS UNIVERSITET

Design Goals and Global Decisions for
MoPro

e Design goals
o Inspect SDD section 1.1

e Some global decisions
o Inspect monopoly-3.2.ep/doc
o Global design decision: Spaces
m Rationale: It's a static setup defined at program start. Easy to

handle with all spaces in a single list (can build Spaces and GUI
from datafile)

(®%)) GOTEBORGS UNIVERSITET

Decomposition

e Finding the pieces
o Distributed applications (optional)
o MVC
o Analysis model
o Subsystems

e Interfaces!.. to be continued...

GOTEBORGS UNIVERSITET

Distributed applications (1) (optional)

e Partitioning Into Tiers (separate applications)
o Typically client/server

e Parts of analysis model probably shared
o Where to put it?

AN \ Model?

—

Client (tier 1) Server (tier 2)

GOTEBORGS UNIVERSITET

Distributed applications (2) (optional)

e Interfaces
o The important design decisions! What would we like to do?
o Exact implementation is a detail, keep it open...

Client Server

Server Client
\ interface interface /

Net subsystem C::) Net subsystem

GOTEBORGS UNIVERSITET

MVC

e Have the pieces
o Packages in Java
e The interfaces
o View implements some observer interface
o Controls often use a common simple interface, more later...
o Model...?? ..next slide...

GOTEBORGS UNIVERSITET

Interface(s) to Analysis Model

e Anemic model
o Analysis classes act as data, used as parameters and/or return
values, normally no interfaces for model object
o Controls uses simple interface(s) to retrieve model objects and
possible act on
e Fat model
o Model objects with much functionality
o Expose functionality through interfaces
o Keep as much as possible inside model, just expose what's
needed!

e Again: Possible use a mixture

(®%)) GOTEBORGS UNIVERSITET

MoPro Interfaces to Analysis Model

e Comparing monopoly-3.2.ep (anemic) and monopoly-3.2-
DDD.ep (fat)

e Anemic
o One simple interface [Game

o [Fat
o Objects exposing functionality to GUI have interfaces, IGame,
IPlayer, IRules (other interfaces for technical reasons used by
Visitor-pattern, possible more later...)
o The data-parts (the pure data) of the model objects as "value

objects”
m Sent from/to GUI

(®%)) GOTEBORGS UNIVERSITET

Partition Into Subsystems

e Which are the high level subsystems?
o Vague name code smell => low cohesion

Interface
G File
subsystem

Another UML symbol

GOTEBORGS UNIVERSITET

Some Typical Subsystem

e Persistency

e Printing

e Communication

e Rule systems (business/game rules)

e Engines, simulation engine

e Processors (text formatter, spell checker)
e Security, authorization module

e Mappers, mapping between formats

(®%)) GOTEBORGS UNIVERSITET

Subsystem Interfaces

e Once again: The interfaces are the important design
decisions, exact implementation is a detail!.

e Example: IPersistency

o Interface to storage system
1. What would you like to do?
2. Implementation: Flat files, serialization, XML, real database

Interface?

Application \

(®%)) GOTEBORGS UNIVERSITET

Layering

e High level abstraction subsystem uses low level
o Dependencies going towards lower level
o Lowest abstraction layer often uses primitive data

e Layers calls each other via interfaces
e Layering inside subsystem possible

GOTEBORGS UNIVERSITET

Layering Example

Navigation system (Map)

Uses

es

\/

File handling subsystem
(String)

(®9)) GOTEBORGS UNIVERSITET

High level
Objects

Objects

Primitive data

Layering and MVC

e Dependencies!

View
! |
/ I
y |
|
Control '|
< |
N \
N I
R\ Y
Model

Communication

e Between applications (client/server)
e Inside application
e Synchronous
o Blocking method call, like a telephone call

e Asynchronous
o Method starts thread, and returns (aka messaging, like sending
a letter)

GOTEBORGS UNIVERSITET

Communication in MoPro

e State Changes
o The state of the model has changed
o Example: A player buys a street, set owner for street => model
state changed

e Events
o Something happens
o Example: Player gets equal dices. No state change, an "event”
the game must handle
e Example : The EventBus
o Rationale: Very many state changes/events, observers
connected in many ways also dynamic. Centralize it.

o See monopoly-3.2.ep/doc, event.EventBus, class Player and
GUIBuilder for use

(®%)) GOTEBORGS UNIVERSITET

Dependency Analysis

e Low coupling is a central quality aspect of software
e Must keep dependencies under control
o At system design: Inspect UML or other to get an initial view

o Later: Use tools continuously (JDepend, others...) to check.
m If needed re-factor.

(®%) GOTEBORGS UNIVERSITET

Persistency And Concurrency

e Persistent data
o Data that outlives the application execution
m Example: Highscore list
m Possible file format?
m Possible have to translate between objects and other format
e Concurrency
o Distributed applications inherently concurrent
o Should the subsystem be thread safe?
o Note: ConcurrentHashMap in MoPro (EventBus)

(®%)) GOTEBORGS UNIVERSITET

Security And Boundary Conditions

e Security
o Should user login?
o Roles?

e Boundary conditions

o How to start and stop

m Usually a shell script or bat file

m Stop, what will happen...(probably trivial)
o Exception handling

GOTEBORGS UNIVERSITET

L eftovers

e Some classes will not fit in a subsystems
o Helper classes
o Possible utils-package

GOTEBORGS UNIVERSITET

System Design for MoPro

e A final look at the SDD

e And a quick demorun of monopoly-2.0.ep
o Buy/Sell property use cases
o EventBus

o More GUI, disable/enable

GOTEBORGS UNIVERSITET

Hmm...

Our Disaster Recovery Plan
Goes Something Like This...

{®})) GOTEBORGS UNIVERSITET

