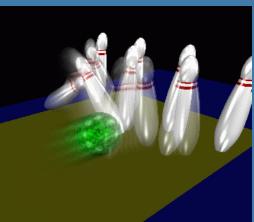
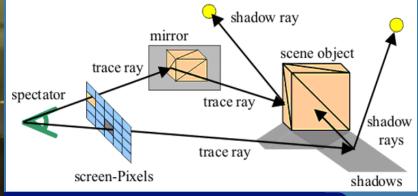
Intersection Testing Chapter 16





Department of Computer Engineering Chalmers University of Technology **Tutorial 7**

Two options: • Default:

- 3D World + 3DSMax Design tutorial:
 - Your own render engine

or

- Optionally, on your risk:
 - Path tracing lab
 - New for this year
 - Advanced
 - The most recent way to implement path tracing.

What for?

• A tool needed for the graphics people all the time...

- Very important components:
 - Need to make them fast!
- Finding if (and where) a ray hits an object
 - Picking
 - Ray tracing and global illumination
- For speed-up techniques
- Collision detection (treated in a later lecture)

Midtown Madness 3, DICE

Tomas Akenine-Mőller © 2003

Some basic geometrical primitives

• Ray: • Sphere: • Box – Axis-aligned (AABB) - Oriented (OBB) • *k*-DOP

Four different techniques

- Analytical
- Geometrical
- Separating axis theorem (SAT)
- Dynamic tests

 Given these, one can derive many tests quite easily

 However, often tricks are needed to make them fast

Analytical: Ray/sphere test

- Sphere center: c, and radius r
- Ray: $\mathbf{r}(t) = \mathbf{0} + t\mathbf{d}$
- Sphere formula: ||p-c||=r
- Replace **p** by $\mathbf{r}(t)$, and square it:

$$(\mathbf{r}(t) - \mathbf{c}) \cdot (\mathbf{r}(t) - \mathbf{c}) - r^2 = 0$$

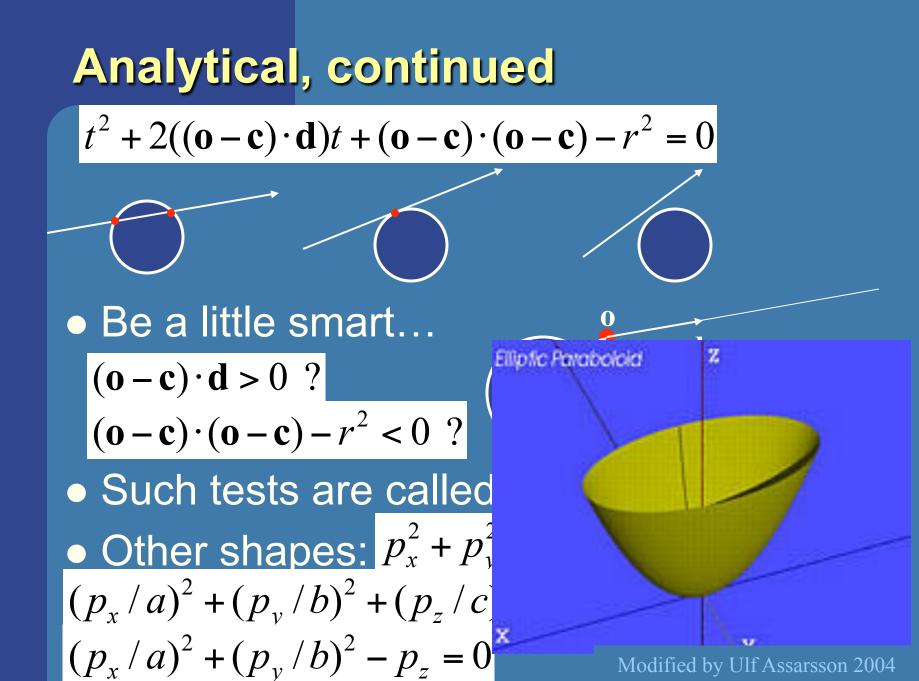
$$(\mathbf{o} + t\mathbf{d} - \mathbf{c}) \cdot (\mathbf{o} + t\mathbf{d} - \mathbf{c}) - r^2 = 0$$

$$(t\mathbf{d} + (\mathbf{o} - \mathbf{c})) \cdot (t\mathbf{d} + (\mathbf{o} - \mathbf{c})) - r^2 = 0$$

$$(\mathbf{d} \cdot \mathbf{d})t^2 + 2((\mathbf{o} - \mathbf{c}) \cdot \mathbf{d})t + (\mathbf{o} - \mathbf{c}) \cdot (\mathbf{o} - \mathbf{c}) - r^2 = 0$$

$$t^{2} + 2((\mathbf{o} - \mathbf{c}) \cdot \mathbf{d})t + (\mathbf{o} - \mathbf{c}) \cdot (\mathbf{o} - \mathbf{c}) - r^{2} = 0 \quad ||\mathbf{d}|| = 1$$

 \mathbf{C}



Geometrical: Ray/Box Intersection

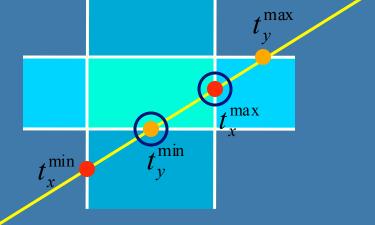
- Boxes and spheres often used as bounding volumes
- A slab is the volume between two parallell planes:

 A box is the logical intersection of three slabs (2 in 2D):

BOX

Geometrical: Ray/Box Intersection (2)

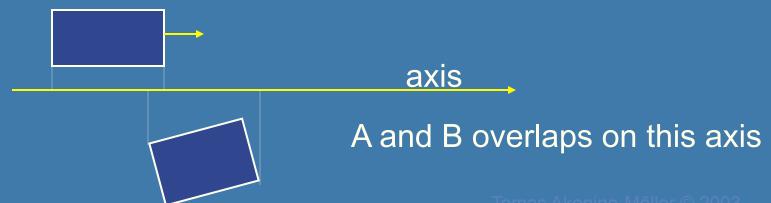
 Intersect the 2 planes of each slab with the ray



Keep max of t^{min} and min of t^{max}
If t^{min} < t^{max} then we got an intersection
Special case when ray parallell to slab

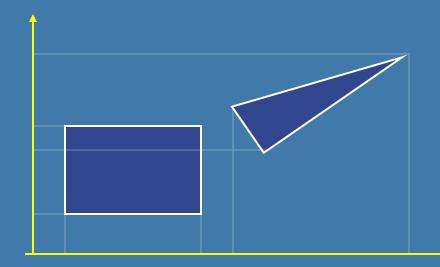
Separating Axis Theorem (SAT) Page 563 in book

- Two convex polyhedrons, A and B, are disjoint if any of the following axes separate the objects:
 - An axis orthogonal to a face of A
 - An axis orthogonal to a face of B
 - An axis formed from the cross product of one edge from each of A and B



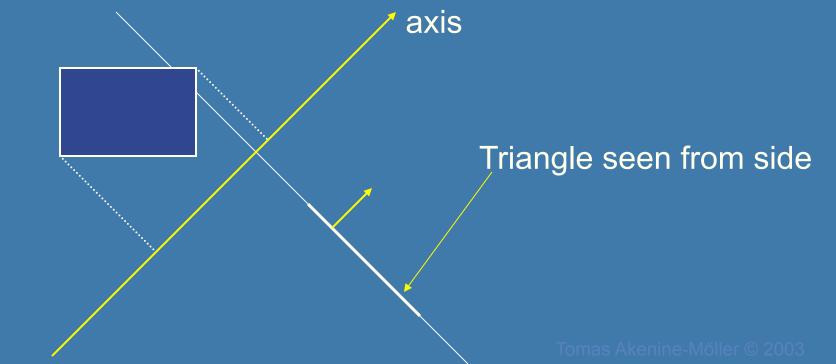
SAT example: Triangle/Box

- E.g an axis-aligned box and a triangle
- 1) test the axes that are orthogonal to the faces of the box
- That is, x,y, and z



Triangle/Box with SAT (2)

Assume that they overlapped on x,y,z
Must continue testing
2) Axis orthogonal to face of triangle



Triangle/Box with SAT (3)

- If still no separating axis has been found...
- 3) Test axis: $t=e_{box} \times e_{triangle}$
- Example:
 - x-axis from box: $e_{box} = (1,0,0)$
 - $\mathbf{e}_{triangle} = \mathbf{v}_1 \mathbf{v}_0$
- Test all such combinations
- If there is at least one separating axis, then the objects do not collide
- Else they do overlap

Rules of Thumb for Intersection Testing

- Acceptance and rejection test
 - Try them early on to make a fast exit
- Postpone expensive calculations if possible
- Use dimension reduction
 - E.g. 3 one-dimensional tests instead of one complex 3D test, or 2D instead of 3D
- Share computations between objects if possible
- Timing!!!

Another analytical example: Ray/ Triangle in detail

- Ray: $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$
- Triangle vertices: \mathbf{v}_0 , \mathbf{v}_1 , \mathbf{v}_2
- A point in the triangle:
- $\mathbf{t}(u,v) = \mathbf{v}_0 + u(\mathbf{v}_1 \mathbf{v}_0) + v(\mathbf{v}_2 \mathbf{v}_0) = \mathbf{v}_0$ = $(1 - u - v)\mathbf{v}_0 + u\mathbf{v}_1 + v\mathbf{v}_2 \quad [u,v \ge 0, u + v \le 1]$
- Set $\mathbf{t}(u,v) = \mathbf{r}(t)$, and solve!

$$\begin{pmatrix} | & | & | \\ -\mathbf{d} & \mathbf{v}_1 - \mathbf{v}_0 & \mathbf{v}_2 - \mathbf{v}_0 \\ | & | & | \end{pmatrix} \begin{pmatrix} t \\ u \\ v \end{pmatrix} = \begin{pmatrix} | \\ \mathbf{o} - \mathbf{v}_0 \\ | \end{pmatrix}$$

$$\begin{aligned} & \text{Ray/Triangle (2)} \quad \begin{pmatrix} | & | & | & | & | \\ -\mathbf{d} & \mathbf{v}_{1} - \mathbf{v}_{0} & \mathbf{v}_{2} - \mathbf{v}_{0} \end{pmatrix} \begin{pmatrix} t \\ u \\ v \end{pmatrix} = \begin{pmatrix} | & v \\ v \end{pmatrix} \\ \mathbf{e}_{1} = \mathbf{v}_{1} - \mathbf{v}_{0} & \mathbf{e}_{2} = \mathbf{v}_{2} - \mathbf{v}_{0} & \mathbf{s} = \mathbf{0} - \mathbf{v}_{0} \\ \mathbf{e}_{1} = \mathbf{v}_{1} - \mathbf{v}_{0} & \mathbf{e}_{2} = \mathbf{v}_{2} - \mathbf{v}_{0} & \mathbf{s} = \mathbf{0} - \mathbf{v}_{0} \\ \mathbf{e}_{1} = \mathbf{v}_{1} - \mathbf{v}_{0} & \mathbf{e}_{2} = \mathbf{v}_{2} - \mathbf{v}_{0} & \mathbf{s} = \mathbf{0} - \mathbf{v}_{0} \\ \mathbf{e}_{1} = \mathbf{v}_{1} - \mathbf{v}_{0} & \mathbf{e}_{2} = \mathbf{v}_{2} - \mathbf{v}_{0} & \mathbf{s} = \mathbf{0} - \mathbf{v}_{0} \\ \mathbf{e}_{1} = \mathbf{v}_{1} - \mathbf{v}_{0} & \mathbf{e}_{2} = \mathbf{v}_{2} - \mathbf{v}_{0} & \mathbf{s} = \mathbf{0} - \mathbf{v}_{0} \\ \mathbf{e}_{1} = \mathbf{v}_{1} - \mathbf{v}_{0} & \mathbf{e}_{2} = \mathbf{v}_{2} - \mathbf{v}_{0} & \mathbf{s} = \mathbf{0} - \mathbf{v}_{0} \\ \mathbf{e}_{1} = \mathbf{v}_{1} - \mathbf{v}_{0} & \mathbf{v}_{2} - \mathbf{v}_{0} & \mathbf{s} = \mathbf{0} - \mathbf{v}_{0} \\ \mathbf{e}_{1} = \mathbf{v}_{1} - \mathbf{v}_{0} & \mathbf{v}_{1} = \mathbf{v}_{1} \\ \mathbf{e}_{1} = \mathbf{v}_{1} & \mathbf{v}_{1} = \mathbf{v}_{1} \\ \mathbf{e}_{2} = \mathbf{v}_{1} & \mathbf{v}_{2} = \mathbf{v}_{1} & \mathbf{v}_{1} \\ \mathbf{e}_{1} = \mathbf{v}_{1} & \mathbf{v}_{1} \\ \mathbf{e}_{1} = \mathbf{v}_{1} & \mathbf{v}_{1} & \mathbf{v}_{1} \\ \mathbf{e}_{1} = \mathbf{v}_{1} & \mathbf{v}_{1} & \mathbf{v}_{1} \\ \mathbf{e}_{1} = \mathbf{v}_{1} & \mathbf{v}_{1} \\ \mathbf{e}_{1} = \mathbf{v}_{1} \\ \mathbf{e}_{1} = \mathbf{v}_{1} & \mathbf{v}_{1} \\ \mathbf{e}_{1} = \mathbf{v}_{1} \\$$

Ray/Triangle (2)
$$\begin{pmatrix} | & | & | & | \\ -\mathbf{d} & \mathbf{v}_{1} - \mathbf{v}_{0} & \mathbf{v}_{2} - \mathbf{v}_{0} \\ | & | & | & | \end{pmatrix}\begin{pmatrix} t \\ u \\ v \end{pmatrix} = \begin{pmatrix} | \\ \mathbf{o} - \mathbf{v}_{0} \\ | \\ \mathbf{v} \end{pmatrix}$$
$$\mathbf{e}_{1} = \mathbf{v}_{1} - \mathbf{v}_{0} \quad \mathbf{e}_{2} = \mathbf{v}_{2} - \mathbf{v}_{0} \quad \mathbf{s} = \mathbf{o} - \mathbf{v}_{0}$$
$$\mathbf{e}_{1} = \mathbf{v}_{1} - \mathbf{v}_{0} \quad \mathbf{e}_{2} = \mathbf{v}_{2} - \mathbf{v}_{0} \quad \mathbf{s} = \mathbf{o} - \mathbf{v}_{0}$$
$$\mathbf{s} = \mathbf{v}_{1} - \mathbf{v}_{0} \quad \mathbf{s} = \mathbf{o} - \mathbf{v}_{0}$$
$$\mathbf{s} = \mathbf{o} - \mathbf{v}_{0}$$
$$\mathbf{s} = \mathbf{v}_{1} - \mathbf{v}_{0} \quad \mathbf{s} = \mathbf{o} - \mathbf{v}_{0}$$
$$\mathbf{s} = \mathbf{v}_{1} - \mathbf{v}_{0} \quad \mathbf{s} = \mathbf{v}_{1} - \mathbf{v}_{0} \quad \mathbf{s} = \mathbf{o} - \mathbf{v}_{0}$$
$$\mathbf{s} = \mathbf{v}_{1} - \mathbf{v}_{0} \quad \mathbf{s} = \mathbf{v}_{1} - \mathbf{v}_{1} \quad \mathbf{v} = \mathbf{v}_{1} \quad \mathbf{s} = \mathbf{v}_{1} - \mathbf{v}_{1} \quad \mathbf{s} = \mathbf{v}_{1} \quad \mathbf{s} = \mathbf{v}_{1} - \mathbf{v}_{1} \quad \mathbf{s} = \mathbf{v}_{1} \quad \mathbf{s} = \mathbf{v}_{1} - \mathbf{v}_{1} \quad \mathbf{s} = \mathbf{v}_{1} - \mathbf{v}_{1} \quad \mathbf{s} = \mathbf{$$

Use this fact : $det(\mathbf{a}, \mathbf{b}, \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = -(\mathbf{a} \times \mathbf{c}) \cdot \mathbf{b}$

$$\begin{pmatrix} t \\ u \\ v \end{pmatrix} = \frac{1}{(\mathbf{d} \times \mathbf{e}_2) \cdot \mathbf{e}_1} \begin{pmatrix} (\mathbf{s} \times \mathbf{e}_1) \cdot \mathbf{e}_2 \\ (\mathbf{d} \times \mathbf{e}_2) \cdot \mathbf{s} \\ (\mathbf{s} \times \mathbf{e}_1) \cdot \mathbf{d} \end{pmatrix}$$

• Share factors to speed up computations

Tomas Akenine-Mőller © 2003

Ray/Triangle (3) Implementation

$$\begin{pmatrix} t \\ u \\ v \end{pmatrix} = \frac{1}{(\mathbf{d} \times \mathbf{e}_2) \cdot \mathbf{e}_1} \begin{pmatrix} (\mathbf{s} \times \mathbf{e}_1) \cdot \mathbf{e}_2 \\ (\mathbf{d} \times \mathbf{e}_2) \cdot \mathbf{s} \\ (\mathbf{s} \times \mathbf{e}_1) \cdot \mathbf{d} \end{pmatrix}$$

• Be smart!

- Compute as little as possible. Then test

- Examples: $\mathbf{p} = \mathbf{d} \times \mathbf{e}_2$ $a = \mathbf{p} \cdot \mathbf{e}_1$ f = 1/a
- Compute $u = f(\mathbf{p} \cdot \mathbf{s})$
- Then test valid bounds
- if (u<0 or u>1) exit;

Plane :
$$\pi : \mathbf{n} \cdot \mathbf{p} + d = 0$$

Point/Plane
• Insert a point \mathbf{x} into plane equation:
 $f(\mathbf{x}) = \mathbf{n} \cdot \mathbf{x} + d$
 $f(\mathbf{x}) = \mathbf{n} \cdot \mathbf{x} + d = 0$ for \mathbf{x} 's on the plane
 $f(\mathbf{x}) = \mathbf{n} \cdot \mathbf{x} + d < 0$ for \mathbf{x} 's on one side of the plane
 $f(\mathbf{x}) = \mathbf{n} \cdot \mathbf{x} + d > 0$ for \mathbf{x} 's on the other side
 $f(\mathbf{x}) = \mathbf{n} \cdot \mathbf{x} + d > 0$ for \mathbf{x} 's on the other side
 $\mathbf{n} \cdot \mathbf{x}_2 = ||\mathbf{x}_2|| \cos \gamma < 0$
 $\mathbf{n} \cdot \mathbf{x}_1 = ||\mathbf{x}_1|| \cos \phi > 0$

Sphere/Plane Box/Plane

Plane: $\pi : \mathbf{n} \cdot \mathbf{p} + d = 0$ Sphere: $\mathbf{c} \quad r$ AABB: $\mathbf{b}^{\min} \quad \mathbf{b}^{\max}$

Sphere: compute f(c) = n · c + d
f(c) is the signed distance (n normalized)
abs(f(c)) > r no collision
abs(f(c)) = r sphere touches the plane
abs(f(c)) < r sphere intersects plane

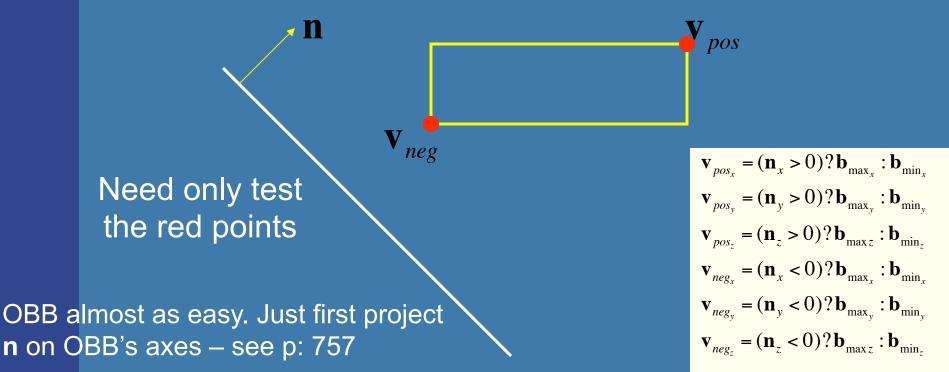
• Box: insert all 8 corners

 If all f's have the same sign, then all points are on the same side, and no collision

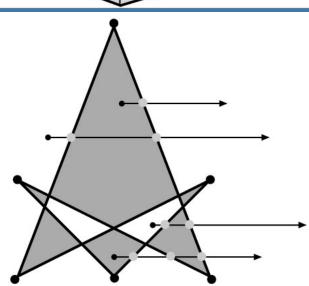
AABB/plane

Plane: $\pi : \mathbf{n} \cdot \mathbf{p} + d = 0$ Sphere: $\mathbf{c} \quad r$ Box: $\mathbf{b}^{\min} \quad \mathbf{b}^{\max}$

- The smart way (shown in 2D)
- Find the two vertices that have the most positive and most negative value when tested againt the plane



Ray/Polygon: very briefly Intersect ray with polygon plane Project from 3D to 2D How? • Find $\max(|n_x|, |n_v|, |n_z|)$ Skip that coordinate! Then, count crossing in 2D



Volume/Volume tests

If : any of object A's $(x,y,z)_{min}$ are larger than object B's $(x,y,z)_{max}$ or any of object B's $(x,y,z)_{min}$ are larger than object A's $(x,y,z)_{max}$, then there is no intersection. Otherwise there is.

 X_{max}, y_{max}

 x_{min}, y_{min}

 x_{max}, y_{max}

- Used in collision detection th
- Sphere/sphere

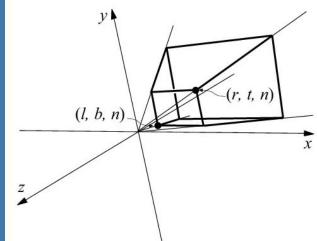
– Compute squared distance between sphere centers, and compare to $(r_1+r_2)^2$

- Axis-Aligned Bounding Box (AABB)
 - Test in 1D for x,y, and z

 Oriented Bounding boxes – Use SAT [details in book]

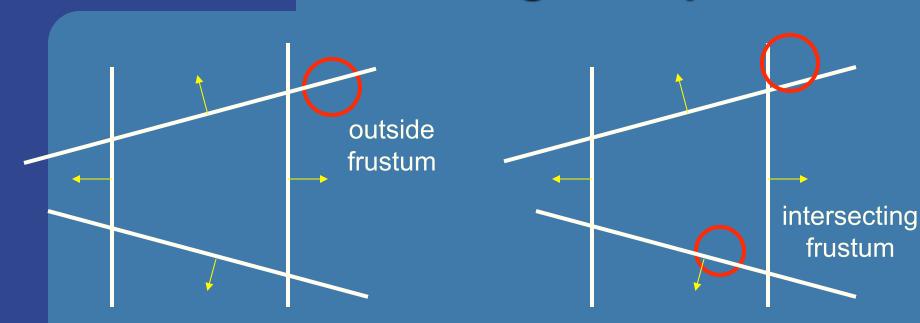
View frustum testing

- View frustum is 6 planes:
- Near, far, right, left, top,



- Create planes from projection matrix
 - Let all positive half spaces be outside frustum
 - Not dealt with here -- p. 773-774, 3rd ed.
- Sphere/frustum common approach:
 - Test sphere against each of the 6 frustum planes:
 - If outside the plane => no intersection
 - If intersecting the plane or inside, continue
 - If not outside after all six planes, then conservatively concider sphere as inside or intersecting
- Example follows...

View frustum testing example



Not exact test, but not incorrect
 A sphere that is reported to be inside, can be outside

- Not vice versa
- Similarly for boxes

Dynamic Intersection Testing [In book: 620-628]

Testing is often done every rendered frame, i.e., at discrete time intervals
Therefore, you can get "quantum effects"

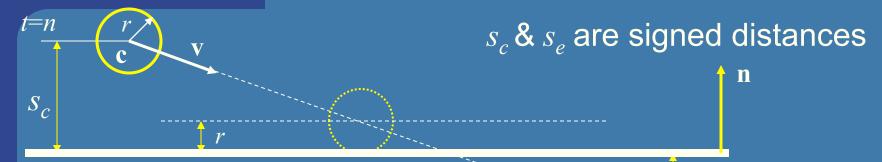
Frame n

Frame *n*+1

- Dynamic testing deals with this
- Is more expensive

 Deals with a time interval: time between two frames

Dynamic intersection testing Sphere/Plane



• No collision occur:

- S_e t=n+1
- If they are on the same side of the plane (s_cs_e>0)
 and: |s_c|>r and |s_e|>r

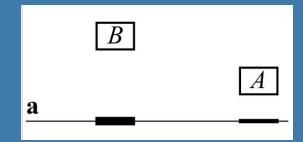
• Otherwise, sphere can move $|s_c|-r$

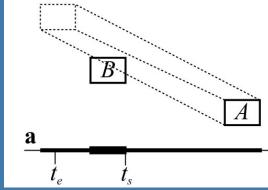
• Time of collision: $t_{cd} = n + \frac{s_c - r}{s_c - s_e}$

• Response: reflect v around n, and move $(1-t_{cd})r$ (r=refl vector)

BONUS

Dynamic Separating Axis Theorem SAT: tests one axis at a time for overlap





- Same with DSAT, but:
 - Use a relative system where B is fixed
 - i.e., compute A's relative motion to B.
 - Need to adjust A's projection on the axis so that the interval moves on the axis as well
- Need to test same axes as with SAT
- Same criteria for overlap/disjoint:
 - If no overlap on axis => disjoint
 - If overlap on all axes => objects overlap

BONUS

Dynamic Sweep-and-Prune

• http://graphics.idav.ucdavis.edu/~dcoming/papers/coming_staadt_vriphys05.pdf

Exercises

• Create a function (by writing code on paper) that tests for intersection between:

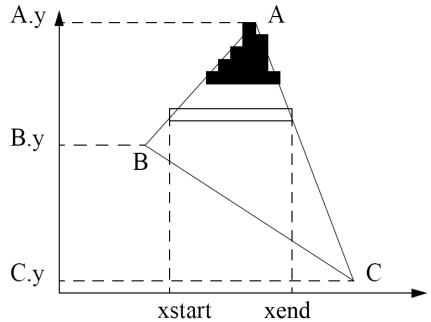
- two spheres
- a ray and a sphere
- view frustum and a sphere

Scan Line Fill

Set active edges to AB and AC For y = A.y, A.y-1,...,C.yIf $y=B.y \rightarrow$ exchange AB with BC Compute xstart and xend. Interpolate color, depth, texcoords etc for points (xstart,y) and (xend,y)

For x = xstart, xstart+1, ...,xend

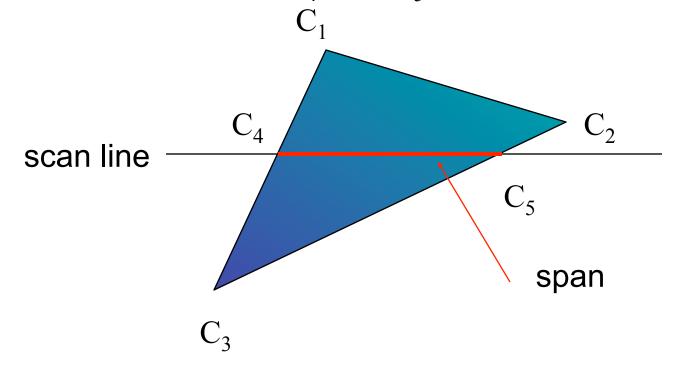
Compute color, depth etc for (x,y) using interpolation.



This is one modern way to rasterize a triangle

Using Interpolation

 $C_1 C_2 C_3$ specified by glColor or by vertex shading C_4 determined by interpolating between C_1 and C_2 C_5 determined by interpolating between C_2 and C_3 interpolate between C_4 and C_5 along span



Rasterizing a Triangle

-Convex Polygons only

- –Nonconvex polygons assumed to have been tessellated
- –Shades (colors) have been computed for vertices (Gouraud shading)
- –Combine with z-buffer algorithm
 - March across scan lines interpolating shades
 - Incremental work small

Flood Fill

- Fill can be done recursively if we know a seed point located inside (WHITE)
- Scan convert edges into buffer in edge/inside color (BLACK)

```
flood_fill(int x, int y) {
    if(read_pixel(x,y) = = WHITE) {
        write_pixel(x,y,BLACK);
        flood_fill(x-1, y);
        flood_fill(x+1, y);
        flood_fill(x, y+1);
        flood_fill(x, y-1);
    }
}
```

What you need to know

- Analytic test:
 - Be able to compute ray vs sphere or other formula
 - ray vs triangle
- Geometrical tests
 - Ray/box with slab-test
 - Ray/polygon (3D->2D)
 - AABB/AABB
- Other:
 - Point/plane
 - Sphere/plane
 - Box/plane, AABB/plane
- SAT
- Know what a dynamic test is
- Understand floodfill and how to rasterize a triangle