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TDA361 - Computer graphics 

2012 

Project - Pathtracer 

 

Introduction 

In this lab we will implement and improve a simple path-tracer. Path-tracing is a way of rendering 
global illumination images that has recently become quite popular in off-line renderers. You will 
start from some simple code that renders an image with direct lighting only. From there we will add 
some basic functionality and then you will do one larger assignment (suggestions at the end) on 
your own.  
 

Note: This is the first time we do this tutorial and there are bound to be some things that will have 

to be improved. Keep a lookout on the webpage for updates, do it at your own risk and have fun! 

 

The rendering Equation 

We will begin by describing the basic math behind what we are going to do, but very briefly. Refer 
to lecture notes, your textbook (chapters 7 and 9) and the internet for details. We start out with The 
Rendering Equation. This equation is actually all we have to solve to create glorious photo-realistic 
images: 
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It says that the radiance (Watt per unit solid angle and unit area)    that leaves a point p in the 

direction   can be found from the:  

 Emitted Light,   (   ) – If the surface at point p emits radiance in direction   

 BRDF,  (      )  - This is a function that describes how the surface reflects light. 

 Incoming radiance,   (   
 ) - This is the incoming light from direction   , which we typically 

find by evaluating   ( 
     ) again at the first intersection point (  ) in that direction. 

 Cosine term,    (    ) - This will attenuate the incoming light based on the angle between 
light and normal. 

 

This equation is recursive (since    depends on   ). That is, the outgoing light from any point 
depends on the incoming light from all directions in that point, which is the outgoing light from a lot 
of surrounding points, which in turn depend on the incoming light at those points, and so on.  

There is usually no analytical solution to the rendering equation. We can however estimate a 
solution using what is called Monte Carlo integration: 
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and that is exactly what we are going to do. The directions    above are N random directions 
uniformly distributed over the hemisphere. We will discuss better sampling later.  

The BRDF and Materials 

In our discussion and code we will talk about BRDFs and Materials. The Bidirectional Reflectance 
Distribution Function (BRDF) is a four-dimensional function that says how much of the energy that 
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comes from direction   will be reflected in some direction   . The BRDF is reciprocal, i.e. 

 (      )    (      ) and energy-conserving. This second property means that unless energy 
is absorbed and turned into heat, the total energy reflected will equal the total incoming energy 
over the hemisphere.  

In this tutorial, a Material can “contain” one BRDF or a combination of several BRDFs, and various 
settings that describe the material (e.g. reflectance, index-of-refraction and so on…).  

 

The Cosine Term 

The BRDF describes how a specific surface reflects light, and can be 
expressed in tons of different ways. It is important to understand that the 
cosine term in the equations above is not a part of the BRDF. To 
understand this term it is important to realize that we are evaluating the 
reflected radiance from an infinitesimal surface (not a point), and this 
surface will receive different amounts of energy depending on its 
orientation towards the incoming light. 

Path-tracing 

Let's move on to something more practical and find out how we can use all this to generate pretty 
images. We will use a method called path-tracing to solve the equation above and in this section 
we will briefly cover how that works, before we go on to actually implement one.  

For starters, each frame we will shoot one ray per pixel 
(the ray starts at the camera and goes “through” the pixel 
and into the scene). We find the first intersection-point 
with the scene and there we want to estimate the 
outgoing radiance.  

We do so by shooting one single ray in a perfectly 
random direction to estimate the incoming radiance. At 
the first intersection point for that ray, we again shoot a 
single ray and so on, forming a path that goes on until 
there is no intersection (or we terminate on some other 

criteria). At each vertex of the path we will evaluate the emitted light, the BRDF and the cosine 
term to obtain the radiance leaving the point. When the recursion has terminated and we have 
obtained    for the first ray shot, we record this radiance in the framebuffer.  

This is all we need to do to create a mathematically sound estimation of the true global illumination 
image we sought! It’s probably all black though, unless we were lucky and hit an emitting surface 
with some rays in which case it might be black with a little bit of noise. But if we keep running the 
algorithm, and accumulate the incoming radiance in each pixel (and divide by the number of 
samples) we would eventually end up with a correct image. This will take more computing time 
than is left for this course though, so let’s speed things up a bit.  

Direct Illumination 

The first step is to separate indirect and direct illumination. At 
each vertex of the path we will first shoot a shadow-ray to each 
of the light-sources in the scene. If there is no geometry 
blocking the light we will multiply the radiance from the light 
with the BRDF and cosine term and then add the incoming 
indirect light by shooting a single ray as before. For this to be 
correct, we just have to make sure that the surfaces we have 
chosen to be light-sources do not contribute emitted radiance if 
sampled by an indirect ray.  

There! That’s a path-tracer and it generates correct images. It’s still painfully slow if any of our 
materials have a narrow brdf though. We will remedy this with what is called importance sampling.    
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Importance sampling 

The problem is illustrated in the image to the right. 
Say that our BRDF represents a near mirror 
reflection. That means that all sample directions that 
are not close to the perfect specular reflection 
direction will contribute almost nothing.  

With importance sampling we will instead pick 
samples from a distribution that looks more like the 
BRDF we are trying to sample, for which we know 
the Probability Density Function (PDF),  (  ).  
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This new equation is no different from the previous one, except that we now allow for varying 

PDFs (Before, the PDF was a constant  
 

  
 since we sampled uniformly on the hemisphere). We 

will now pick samples with a probability that is much higher where the BRDF is large. We then 
have to divide the resulting radiance of each sample by the PDF in the sample direction to account 

for this. So we will have more samples where the BRDF is 
high, but if we happen to pick a sample where the PDF is 
low, its contribution will be increased.  

Note that we rarely can find a sampling scheme that 
exactly matches the BRDF and that the sampling scheme 
must be carefully chosen so that it will not occasionally 
sample directions with very low probability where the 
BRDF is not correspondingly low. If we do, then we can 
get very strong samples in some random pixels that take 
a very long time to converge.  

Let’s look at a simple (perhaps the simplest) example. Say that our surface has a gray perfectly 
diffuse material. The surface absorbs 30% of the incoming light and reflects the rest. A diffuse 
material reflects equally in all directions.  

      (           ) 

 (      )   
 

 
      

Well… If it reflects equally in all directions, wouldn’t sampling the hemisphere uniformly be the best 
choice? No because what we are sampling is not just an integral over the BRDF. We are trying to 
find a solution to the integral:  

∫  (      )  (   
 )    (    )    

 

 

So ultimately we would like to importance sample with a sample distribution that matches this 
integral as well as possible. But the incoming light is rarely known in advance, and is expensive to 
evaluate. We can however importance sample on the cosine-term.  
 
In fact, there is a simple way to choose a direction with a pdf that is  (  )  
   (    )

 
. All you have to do is to generate points uniformly on a disc, then project 

these points on the hemisphere. You can find a number of useful sampling 
methods with PDFs and other good stuff in the Global Illumination Compedium:  
 
http://people.cs.kuleuven.be/~philip.dutre/GI/TotalCompendium.pdf 
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Now let’s use this:  
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How about that? Just by changing the directions you sample, the expression becomes a lot 
simpler and you get a better result. 

 

Implementing a basic path-tracer 

That’s enough theory for now. Open the Visual Studio solution file (“Pathtracer.sln”), make sure 
you have “Release” build activated and run the program. You should see something like this: 
 
Yikes! That’s not pretty at all. Well, don’t worry. You 
will have many opportunities to improve on this 
image. But first, let’s examine what the program 
does.  
 

Open the file pathtracer_main.cpp. This should 

look quite familiar by now. It is a simple OpenGL 
program that loads an OBJ model (in the main 
function towards the end) and then starts a GLUT 
main loop. 
 
Every time the display() function runs, it will trace 
one ray per pixel (by calling 

g_pathtracer.tracePrimaryRays()). This is 

where all the interesting stuff happens. When this is 
done, the PathTracer object will contain an updated 
framebuffer and that will be copied to a texture and rendered as a full-screen quad in the window.  
 
You will spend very little time in this file, but look it through and make sure you understand what 
goes on. Then look at the very top where you can find these lines 
 
#ifdef _DEBUG 
int g_subsample = 8;  
#else  
int g_subsample = 1;  
#endif 

 
This is a variable you may want to change at times. The g_subsample variable lets you raytrace a 
smaller image than the size of the window while showing a magnified version. This is very useful 
while debugging or just trying something new. Set g_subsample to 2 for now. You can change 
these values in-game by pressing ‘s’ or ‘S’.  
  

   

Pathtracer::tracePrimaryRays() 

Now take a look at this function to make sure you understand it. It takes the currently selected 

camera and generates one ray for each pixel. It then calls Scene::intersect for this ray. This 

method will find the first intersection between the ray and the scene and fills in an Intersection 

object. This object contains the position, normal and a pointer to the Material of the surface that 
was intersected. Or, the method returns false if there was no intersection.  

Then, if there was an intersection, we need to evaluate the radiance that reaches us from that 
point. This is calculated in Pathtracer::Li. If there was no intersection 

Pathtracer::Lenvironment is called instead, which currently just returns a constant radiance. 
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Assignment:  
Let’s do a little something to improve the quality of the image already. The code currently samples 
the lower left corner of the pixel every single iteration. Modify this so that it chooses a random 
position within the pixel instead, to get some nice super-sample antialiasing.  
 
Tip: There is a randf() helper function in the file MCSampling.h which returns a random float value between 0.0 and 1.0 

 

Cameras and lights 

A quick intermission about cameras and lights. The pathtracer reads OBJ files, which look just as 
they always have, but the corresponding MTL files look nothing like real MTL files. Take a look at 
cornell.mtl. You need not care about the material definitions just yet, but note that we can define 
lights and cameras in these files which our program will respect.  
 
You can have any number of lights and any number of cameras. The lights are all used at once, 
and you can change the chosen camera with the ‘c’ key. Give it a try. The arguments for lights and 
cameras should be self-explanatory, but if not, ask an assistant. 
 

Pathtracer::Li() 

This is where all the interesting stuff happens. Or doesn’t happen as it stands, but you will soon 
take care of that. The current code just iterates over all lights and chooses one position on each 
light to sample. It then evaluates  (      )  (    )    (    ), where    is the radiance from the 
light, and returns the sum of all light contributions.  
 
Assignment: 
The least thing we can do is to include light visibility so we get some shadows. 
Create a shadow-ray and intersect it with the scene to see if the light should 
contribute or not. When you are done you should see a lovely soft shadow like 
the image to the right.  
 
Tip #1: The Scene class has an intersectP()method that may suit your needs. What is the 

difference between this and the intersect() method?  

Tip#2: There is a value PT_EPSILON defined. This might come in handy here.  

 

Well, that was easy. Now for the tricky part. The current program is not a path-tracer. Because it 
doesn’t trace a path. It’s time to rewrite it so that it does not only look at the direct lighting but also 
shoots a ray to gather indirect illumination.  
 
We could (and you may) implement this as a recursive algorithm, but in practice this is often a lot 
slower so in the pseudo code below we will instead suggest an iterative approach. Read the 
pseudo code below and make sure you understand it, then roll up your sleeves and implement it in 
C++:  
 
L    <- (0.0, 0.0, 0.0) 

pathThroughput  <- (1.0, 1.0, 1.0) 

currentRay  <- primary ray 

isect   <- primary intersection 

for bounces = 0 to PT_MAX_BOUNCES 

{ 

// Direct illumination 

 for each Light 

  sample a point on light 

  L += pathThroughput * direct illumination from light if visible 

 

 // Sample an outgoing direction, the brdf and pdf 

 (wo, brdf, pdf)  <- material.sample_f(wi) 

  

cosineterm = abs(dot(wo, isect.normal) 

 

 // You may want to make sure pdf cannot be 0 before this 
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 pathThroughput = pathThroughput * (brdf * cosineterm)/pdf 

 

 

 // If pathThroughput is too small there is no need to continue 

if max(pathThroughput) < PT_EPSILON return L 

 

 // Create next ray on path 

 currentRay <- new ray from intersection point in outgoing direction 

 

// Offset the ray slightly to avoid self-intersection  

 currentRay.o += PT_EPSILON * isect.normal 

 

 // Trace the new ray 

isect <- m_scene.intersect(currentRay) 

 

if no intersection  

 return L + pathThroughput * Lenvironment(currentRay) 

} 

 

Allright. If you get it right, you should have something like the 
image to the left. Isn’t life better with Global Illumination?  Now 
we will add some importance sampling. In your pathtracer, the 
direction in which to sample indirect illumination is chosen by 

the Material::sample_f() method. 

 
Assignment: 
These cubes all have a simple diffuse material so far. Change 

the DiffuseMaterial::sample_f() method so that it 

importance samples the cosine term.  

 
Tip: In MCSampling.h we have already provided a 

cosineSampleHemisphere() method for you.  

 
 

Now compare the non-importance sampled image and the importance sampled after the same 
number of samples per pixel (you can set the MAX_SAMPLES_PER_PIXEL pixel in 
pathtracer_main.cpp). 

 

Materials 

Take a look at Material.h. Besides the 

DiffuseMaterial with which you are 

already acquainted there are a number of 
others. When we read an OBJ/MTL file from 
disc we actually build a little material tree 
that looks as to the right.   
 
 

Now uncomment the additional arguments to the materials in 
cornell.mtl. If everything is perfect, you should end up with 
something like the image to the left.  

 
But you will probably have problems with the refractive box. 
Consider the offset you do when shooting your new indirect 
illumination rays. What happens when it refracts?  

 
 

Once it actually works well, go ahead and play with the material 
settings and have fun for exactly one hour. Then choose a 
project from below and show your work to an assistant.  
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Project 

Now that you know the ins and outs of the path-tracer, choose a project from one of the suggested 
options below, or if you want to do something else suggest it to an assistant. The suggestions are 
roughly listed in order of expected difficulty. Before you start on a project, talk to an assistant to get 
some tips. 

1. Textures – Just as in realtime rendering, offline renderers frequently use textures to increase 
the level of detail in a scene. Add support for diffuse textures to the code. The current program 
already contains code that reads texture coordinates and textures (there is a file called 
“cornell_textured.obj” which has a texture on the floor for testing), but you will have to make 
sure it ends up on screen.  
 
Optional: You will be able to get even more interesting images if you allow for other types of 
textures as well. Try to implement support for normal-maps or specular-maps or transparency-
maps or whatever tickles your fancy.  

2. BVH – Examine the Scene class. You will find that the triangles are all stored in one list and 
that when intersect is called, we will simply iterate through this list of triangles and intersect 
them one by one to find the closest intersection. This works decently for the simple scene we 
have looked at so far which only has 32 triangles, but for anything more complex it will be 
extremely slow.  
 
Implement an acceleration structure (a fairly simple, still powerful suggestion is an AABB tree). 
You should at least be able to get below 4 seconds per frame for the scene “cornellbottle2.obj” 
on the lab room machines. 
 
Optional: The acceleration structure is not the only thing that is slow in this path-tracer. Try to 
profile the code and make it as fast as you possibly can.  

3. HDRI lighting – Currently when a ray misses all geometry, the environment will return a 
single constant radiance. You can get much more interesting lighting of an outdoor scene if 
you instead fetch radiance from an HDRI environment.  
 
Either load and use an HDRI environment map or (trickier) implement a Sun&Sky model, for 
example this one:  
http://www.cs.utah.edu/~shirley/papers/sunsky/sunsky.pdf 
 
The FreeImage library that is used for reading textures in the current code can also read .exr 
or .hdr high dynamic range images.  
 
Optional: If you use a tricky HDRI environment map you may find that it takes a long time for 
your render to converge.This can be greatly improved if you treat your environment as a light 
instead and importance sample the direction you sample. 

4. Microfacet BSDF – The BRDFs available in the pathtracer so far are quite simple. You can 
represent much more realistic looking materials if you add a BRDF that supports glossy 
reflections (not perfect mirror reflections). One good paper that presents a physically plausible 
Microfacet based BRDF that also handles rough refractions is:  

 http://www.graphics.cornell.edu/~bjw/microfacetbsdf.pdf
Extend the path-tracer to use one of the models presented in this paper instead of our perfect 
specular reflection BRDF.  
Optional: Also allow rough refractions.  

http://www.cs.utah.edu/~shirley/papers/sunsky/sunsky.pdf
http://www.graphics.cornell.edu/~bjw/microfacetbsdf.pdf

