
AFP - Lecture 2
 Domain Specific

Embedded Languages

Patrik Jansson
2012

(slides by Norell, Bernardy & Jansson)

Anatomy of a DSEL

• A set of types modelling concepts in
the domain

• Constructor functions constructing
elements of these types

• Combinators combining and
modifying elements

• Run functions making observations of
the elements

newtype Signal a = Signal (Time -> a)newtype Signal a = Signal (Time -> a)

constS :: a -> Signal a
timeS :: Signal Time

constS :: a -> Signal a
timeS :: Signal Time

($$) :: Signal (a -> b) -> Signal a -> Signal b
mapS :: (a -> b) -> Signal a -> Signal b

($$) :: Signal (a -> b) -> Signal a -> Signal b
mapS :: (a -> b) -> Signal a -> Signal b

sample :: Signal a -> (Time -> a)sample :: Signal a -> (Time -> a)

Primitive and Derived
operations

• A primitive operation is defined
exploiting the definitions of the
involved types

• A derived operation can be defined
purely in terms of other operations

Try to keep the set
of primitive

operations as small
as possible! (Why?)

Try to keep the set
of primitive

operations as small
as possible! (Why?)

timeS :: Signal Time
timeS = Signal (\t -> t)

timeS :: Signal Time
timeS = Signal (\t -> t)

mapS :: (a -> b) -> Signal a -> Signal b
mapS f s = constS f $$ s

mapS :: (a -> b) -> Signal a -> Signal b
mapS f s = constS f $$ s

Think about…

• Compositionality
– Combining elements into more complex

ones should be easy and natural

• Abstraction
– The user shouldn’t have to know (or be

allowed to exploit) the underlying
implementation of your types.

Answer: Awkwardly!
addS x y = mapS (\t -> sample x t + sample y t) timeS

Answer: Awkwardly!
addS x y = mapS (\t -> sample x t + sample y t) timeS

Suppose we didn’t have ($$) in our
Signal language. How would you define

addS x y = constS (+) $$ x $$ y

Suppose we didn’t have ($$) in our
Signal language. How would you define

addS x y = constS (+) $$ x $$ y

Changing
implementation

shouldn’t break user
code!

Changing
implementation

shouldn’t break user
code!

Implementation of a DSEL
• Shallow embedding

– Represent elements by their semantics (what
observations they support)

– Constructor functions and combinators do most of
the work, run functions for free

• Deep embedding
– Represent elements by how they are constructed

– Most of the work done by the run functions,
constructor functions and combinators for free

• Or something in between…

Is the signal
library a deep

or shallow
embedding?

Is the signal
library a deep

or shallow
embedding?

A deep embedding of Signals

data Signal a where
ConstS :: a -> Signal a
TimeS :: Signal Time
(:$$) :: Signal (a -> b) -> Signal a -> Signal b

constS = ConstS
timeS = TimeS
($$) = (:$$)

sample :: Signal a -> (Time -> a)
sample (ConstS x) = const x
sample TimeS = id
sample (f :$$ x) = \t -> sample f t $ sample x t

-- Start of derived operations
mapS :: (a -> b) -> Signal a -> Signal b
mapS f x = constS f $$ x

data Signal a where
ConstS :: a -> Signal a
TimeS :: Signal Time
(:$$) :: Signal (a -> b) -> Signal a -> Signal b

constS = ConstS
timeS = TimeS
($$) = (:$$)

sample :: Signal a -> (Time -> a)
sample (ConstS x) = const x
sample TimeS = id
sample (f :$$ x) = \t -> sample f t $ sample x t

-- Start of derived operations
mapS :: (a -> b) -> Signal a -> Signal b
mapS f x = constS f $$ x

Generalized Algebraic
Datatype (GADT). More on
these in another lecture.

Generalized Algebraic
Datatype (GADT). More on
these in another lecture.

All the work
happens in the run

function.

All the work
happens in the run

function.

Derived operations
are unaffected by

implementation style.

Derived operations
are unaffected by

implementation style.

Simple constructors
and combinators.

Simple constructors
and combinators.

Deep vs. Shallow

• A shallow embedding (when it works out)
is often more elegant
– When there is an obvious semantics, shallow

embeddings usually work out nicely

• A deep embedding is easier to extend
– Adding new operations

– Adding new run functions

– Adding optimizations

Like in the Signal
example

Like in the Signal
example

More on this in
another lecture.
More on this in
another lecture.

Working out
the type might

be very
difficult...

Deep embedding
may give you an

easier start

Most of the time you get a mix
between deep and shallow!

Case Study: A language for
Shapes

• Step 1: Design the interface

type Shape
-- Constructor functions
empty :: Shape
circle :: Shape
square :: Shape
-- Combinators
translate :: Vec -> Shape -> Shape
scale :: Vec -> Shape -> Shape
rotate :: Angle -> Shape -> Shape
union :: Shape -> Shape -> Shape
intersect :: Shape -> Shape -> Shape
difference :: Shape -> Shape -> Shape
-- Run functions
inside :: Point -> Shape -> Bool

type Shape
-- Constructor functions
empty :: Shape
circle :: Shape
square :: Shape
-- Combinators
translate :: Vec -> Shape -> Shape
scale :: Vec -> Shape -> Shape
rotate :: Angle -> Shape -> Shape
union :: Shape -> Shape -> Shape
intersect :: Shape -> Shape -> Shape
difference :: Shape -> Shape -> Shape
-- Run functions
inside :: Point -> Shape -> Bool

Unit circle and unit
square. Use translate and

scale to get more
interesting circles and

rectangles.

Unit circle and unit
square. Use translate and

scale to get more
interesting circles and

rectangles.

Interface, continued
• Think about primitive/derived operations

– No obvious derived operations

– Sometimes introducing additional primitives
makes the language nicer

invert :: Shape -> Shape
transform :: Matrix -> Shape -> Shape

scale :: Vec -> Shape -> Shape
scale v = transform (matrix (vecX v) 0 0 (vecY v))

rotate :: Angle -> Shape -> Shape
rotate a = transform (matrix (cos a) (-sin a) (sin a) (cos a))

difference :: Shape -> Shape -> Shape
difference a b = a `intersect` invert b

invert :: Shape -> Shape
transform :: Matrix -> Shape -> Shape

scale :: Vec -> Shape -> Shape
scale v = transform (matrix (vecX v) 0 0 (vecY v))

rotate :: Angle -> Shape -> Shape
rotate a = transform (matrix (cos a) (-sin a) (sin a) (cos a))

difference :: Shape -> Shape -> Shape
difference a b = a `intersect` invert b

We need a
language for
working with

matrices!

We need a
language for
working with

matrices!

Do you remember
your linear algebra

course?

Do you remember
your linear algebra

course?

Side track: A matrix library

type Matrix
type Vector
type Point

-- Constructor functions
point :: Double -> Double -> Point
vec :: Double -> Double -> Vec
matrix :: Double -> Double -> Double -> Double -> Matrix
-- Combinators
mulPt :: Matrix -> Point -> Point
mulVec :: Matrix -> Vec -> Vec
inv :: Matrix -> Matrix
subtract :: Point -> Vec -> Point
-- Run functions
ptX, ptY :: Point -> Double
vecX, vecY :: Vec -> Double

type Matrix
type Vector
type Point

-- Constructor functions
point :: Double -> Double -> Point
vec :: Double -> Double -> Vec
matrix :: Double -> Double -> Double -> Double -> Matrix
-- Combinators
mulPt :: Matrix -> Point -> Point
mulVec :: Matrix -> Vec -> Vec
inv :: Matrix -> Matrix
subtract :: Point -> Vec -> Point
-- Run functions
ptX, ptY :: Point -> Double
vecX, vecY :: Vec -> Double

This should
do for our
purposes.

This should
do for our
purposes.

Shallow embedding

• What are the observations we can
make of a shape?
– inside :: Point -> Shape -> Bool
– So, let’s go for

newtype Shape = Shape (Point -> Bool)

inside :: Point -> Shape -> Bool
inside p (Shape f) = f p

newtype Shape = Shape (Point -> Bool)

inside :: Point -> Shape -> Bool
inside p (Shape f) = f p

In general, it’s not this easy. In most cases you
need to generalize the type of the run function a
little to get a compositional shallow embedding.

In general, it’s not this easy. In most cases you
need to generalize the type of the run function a
little to get a compositional shallow embedding.

Shallow embedding, cont.

• If we picked the right implementation
the operations should now be easy to
implement

empty = Shape $ \p -> False
circle = Shape $ \p -> ptX p ^ 2 + ptY p ^ 2 <= 1
square = Shape $ \p -> abs (ptX p) <= 1 && abs (ptY p) <= 1

transform m a = Shape $ \p -> mulPt (inv m) p `inside` a
translate v a = Shape $ \p -> subtract p v `inside` a

union a b = Shape $ \p -> inside p a || inside p b
intersect a b = Shape $ \p -> inside p a && inside p b
invert a = Shape $ \p -> not (inside p a)

empty = Shape $ \p -> False
circle = Shape $ \p -> ptX p ^ 2 + ptY p ^ 2 <= 1
square = Shape $ \p -> abs (ptX p) <= 1 && abs (ptY p) <= 1

transform m a = Shape $ \p -> mulPt (inv m) p `inside` a
translate v a = Shape $ \p -> subtract p v `inside` a

union a b = Shape $ \p -> inside p a || inside p b
intersect a b = Shape $ \p -> inside p a && inside p b
invert a = Shape $ \p -> not (inside p a)

Trick: move the
point instead of the

shape

Trick: move the
point instead of the

shape

Deep embedding

• Representation is easy, just make a
datatype of the primitive operations

data Shape where -- using Gen. Alg. DataType syntax
 -- Constructor functions
 Empty :: Shape
 Circle :: Shape
 Square :: Shape
 -- Combinators
 Translate :: Vec -> Shape -> Shape
 Transform :: Matrix -> Shape -> Shape
 Union :: Shape -> Shape -> Shape
 Intersect :: Shape -> Shape -> Shape
 Invert :: Shape -> Shape

empty = Empty; circle = Circle; ...

Deep embedding

• … the same datatype without GADT
notation:

data Shape = Empty | Circle | Square
 | Translate Vec Shape
 | Transform Matrix Shape
 | Union Shape Shape | Intersect Shape Shape
 | Invert Shape

empty = Empty
circle = Circle
translate = Translate
transform = Transform
union = Union
intersect = Intersect
invert = Invert

data Shape = Empty | Circle | Square
 | Translate Vec Shape
 | Transform Matrix Shape
 | Union Shape Shape | Intersect Shape Shape
 | Invert Shape

empty = Empty
circle = Circle
translate = Translate
transform = Transform
union = Union
intersect = Intersect
invert = Invert

Deep embedding, cont.

• All the work happens in the run function:

inside :: Point -> Shape -> Bool
p `inside` Empty = False
p `inside` Circle = ptX p ^ 2 + ptY p ^ 2 <= 1
p `inside` Square = abs (ptX p) <= 1 && abs (ptY p) <= 1
p `inside` Translate v a = subtract p v `inside` a
p `inside` Transform m a = mulPt (inv m) p `inside` a
p `inside` Union a b = inside p a || inside p b
p `inside` Intersect a b = inside p a && inside p b
p `inside` Invert a = not (inside p a)

inside :: Point -> Shape -> Bool
p `inside` Empty = False
p `inside` Circle = ptX p ^ 2 + ptY p ^ 2 <= 1
p `inside` Square = abs (ptX p) <= 1 && abs (ptY p) <= 1
p `inside` Translate v a = subtract p v `inside` a
p `inside` Transform m a = mulPt (inv m) p `inside` a
p `inside` Union a b = inside p a || inside p b
p `inside` Intersect a b = inside p a && inside p b
p `inside` Invert a = not (inside p a)

Abstraction!
module Shape

(module Matrix
, Shape
, empty, circle, square
, translate, transform, scale, rotate
, union, intersect, difference, invert
, inside
) where

import Matrix
…

module Shape
(module Matrix
, Shape
, empty, circle, square
, translate, transform, scale, rotate
, union, intersect, difference, invert
, inside
) where

import Matrix
…

Hide the implementation of
the Shape datatype

Hide the implementation of
the Shape datatype

It might be nice to re-
export the matrix library
It might be nice to re-

export the matrix library

The interface is the same
for both deep and shallow

embedding. No visible
difference to the user!

The interface is the same
for both deep and shallow

embedding. No visible
difference to the user!

More interesting run function:
render to ASCII-art

module Render where

import Shape

data Window = Window
{bottomLeft :: Point
, topRight :: Point
, resolution :: (Int, Int)
}

defaultWindow :: Window
pixels :: Window -> [[Point]]

render :: Window -> Shape -> String
render win a = unlines $ map (concatMap putPixel) (pixels win)

where
putPixel p | p `inside` a = “[]”

| otherwise = “ ”

module Render where

import Shape

data Window = Window
{bottomLeft :: Point
, topRight :: Point
, resolution :: (Int, Int)
}

defaultWindow :: Window
pixels :: Window -> [[Point]]

render :: Window -> Shape -> String
render win a = unlines $ map (concatMap putPixel) (pixels win)

where
putPixel p | p `inside` a = “[]”

| otherwise = “ ”

Some action

• Go live!

module Animate where

import Shape
import Render
import Signal

animate :: Window -> Time -> Time -> Signal Shape -> IO ()

module Animate where

import Shape
import Render
import Signal

animate :: Window -> Time -> Time -> Signal Shape -> IO ()

Discussion

• Adding coloured shapes
– Go back and discuss what changes

would need to be made

• Bad shallow implementations
– Looking at the render run function we

might decide to go for

– Discuss the problems with this
implementation

• Other questions/comments..?

newtype Shape = Shape (Window -> String)newtype Shape = Shape (Window -> String)

Summary
• Different kinds of operations

– constructor functions / combinators / run functions

– primitive / derived

• Implementation styles
– Shallow – representation given by semantics

– Deep – representation given by operations

• Remember
– Compositionality

– Abstraction

