Primitive and Derived

Anatomy of a DSEL operations

newtype Signal a = Signal (Time -> a)

* A set of typesSTTTOUE * A primitive operation is defined
AFP - Lecture 2 the domain ConstS 2= Sional exploitind =
Domain Specific - Constructor functions constructing involved fimes - Signal Time
Embedded Languages elements of these types B -

« Combinators combining and . A derved operation can be defined

Patrik Jansson pur@m terms

($$) - Signal (a -> b) -> Signal a -> Signal b

mapsS :: (a -> b) -> Signal a -> Signa
2012 mapsS :: (a b) Signal a ignal b T —
. of primitive mapS :: (a -> b) -> Signal a -> Signal b
(5||des by Norell, Bernardy & Jansson) * operations as small mapS fs=constSf $$ s

as possible! (Why?)

sample :: Signala -> (Time -> a)

Implementation of a DSEL A deep embedding of Signals

Answer: Awkwardly!
addS x y = mapS (\t -> sample x t + sample y t) timeS

Generalized Algebraic

e Shallow embeddi ng data Signal a where Datatyp@ (GADT). More on
ConstS :1a->§ gEul

- Represent elements by their semantics (what TimeS - SignalTime
observations they support) (:$%) .- Signal (a -> b) -> Signal a -> Signal b

— Constructor functions and combinators do_
the work, run functions for free

constS = ConstS
Is the signal timeS = TimeS
library a deep ($%) = (:$%)

or shallow

Simple const ctors

Suppose we didn't have ($$) in our and combin

je. How woul efine
constsS (+) y

All the work

i embedding? sample :: Signal a -> (Time -> a) happens in the run
—The user shouldn't have to know (or be ¢ Deep embeddlng e sample (ConstS x) = const x function
_ sample TimeS =id
allowed to EXp|OIt) the underlylng ReDresfenht elemker;ts bybhovr: they ?re ans ructed sample (f :$$ x) =\t->sample ft $ sample x t

implementatior.af vo - — Most of the work done by the run functions, _ _ , v
P Changmg constructor functions and combinators for free -- Start of derived operations Derived operations
implementation . . mapS :: (a -> b) -> Signal a -> ¢ are unaffected by

shouldn't break user . Or Someth|ng N between... mapS f x = constS f $$ x implementation style.

code!

Deep vs. Shallow

Like in the Signal
example

* A shallow embedding (when it w
Is often more elegant

— When there is an obvious semantics
embeddings usually work out nicel

« A deep embedding is
— Adding new operations
— Adding new run functions
— Adding optimiza

More on this in

another lecture.

Side track: A matrix library

type Matrix
type Vector
type Point

-- Constructor functions

point . Double -> Double -> Point
vec . Double -> Double -> Vec
matrix :: Double -> Double -> Double -> Double -> Matrix
-- Combinators

mulPt - Matrix -> Point -> Point
mulVec :: Matrix -> Vec -> Vec
inv = Matrix -> Matrix
subtract :: Point -> Vec -> Point

-- Run functions

ptX, ptY :: Point -> Double

vecX, vecY :: Vec -> Double

This should

do for our

purposes

Case Study: A language for
Shapes
» Step 1: Design the interface

Unit circle and unit
type Shape square. Use translate and
-- Constructor fun scale to get more
empty interesting circles and
circle = rectangles

square :: Shape

-- Combinators

translate - Vec-> Shape -> Shape
scale - Vec-> Shape -> Shape
rotate - Angle -> Shape -> Shape
union :: Shape -> Shape -> Shape
intersect :: Shape -> Shape -> Shape
difference :: Shape -> Shape -> Shape
-- Run functions

inside :: Point -> Shape -> Bool

Interface, continued

« Think about primitive/derived operations
— No obvious derived operations

— Sometimes introducing additional primitives
makes the language nicer

Shallow embedding

« What are the observations we can
make of a shape?
—inside :: Point -> Shape -> Bool
- So, let's go for

newtype Shape = Shape (Point -> Bool)

inside :: Point -> Shape -> Bool
inside p (Shape f) = fp

In general, it's not this easy. In most cases you

need to generalize the type of the run function a
little to get a shallow embedding

We need a
language for
working with

matrices!

invert :: Shape -> Shape
transform :: Matrix -> Shape

scale :: Vec -> Shape -> Shape
scale v = transform (matrix (vecX v) 0 0 (vecY v))

rotate :: Angle -> Shape -> Shape
rotate a = transform (matrx (cos a) (-sin a) (sin a) (cos a))

. Do you remember
difference :: Shape -> Shay

difference a b = a “interse

Shallow embedding, cont.

» If we picked the right implementation
the operations should now be easy to
Implement

Trick: move the
point instead of the

shape
empty = Shape $ \p -> False
circle = Shape $\p-> ptX p ~ 2 + ¢
square = Shape $ \p -> abs (ptX p) <

transform m a = Shape $ \p -> mulPt (inv m) p “inside” a

translate va = Shape $ \p -> subtract p v “inside” a
union a b = Shape $ \p -> inside p a || inside p b
intersecta b = Shape $ \p -> inside p a && inside p b
invert a = Shape $ \p -> not (inside p a)

Deep embedding

« Representation is easy, just make a
datatype of the primitive operations

data Shape where -- using Gen. Alg. DataType syntax
-- Constructor functions

Empty - Shape

Circle - Shape

Square . Shape

-- Combinators

Translate :: Vec-> Shape -> Shape

Transform :: Matrix -> Shape -> Shape

Union : Shape -> Shape -> Shape
Intersect :: Shape -> Shape -> Shape
Invert . Shape -> Shape

empty = Empty; circle = Circle; ...

Abstraction!

It might be nice to re-
export the matrix library

module Shape

Hide the implementation of
the Shape datatype

import Matrix

= 7The interface is the same
for both deep and shallow

embedding. No visible
difference to the user!

Deep embedding

» .. the same datatype without GADT
notation:

data Shape = Empty | Circle | Square
| Translate Vec Shape
| Transform Matrix Shape
| Union Shape Shape | Intersect Shape Shape
| Invert Shape

empty = Empty
circle = Circle
translate = Translate
transform = Transform

union = Union
intersect = Intersect
invert = Invert

Deep embedding, cont.

« All the work happens in the run function:

inside :: Point -> Shape -> Bool

p ‘inside’ Empty = False

p ‘inside" Circle ptXp ~2+ptYp~2 <=1

p ‘inside’ Square abs (ptX p) <=1 && abs (ptY p) <=1
p ‘inside’ Translate v a subtract p v “inside’ a

p ‘inside’ Transform m a mulPt (inv m) p “inside" a

p ‘inside’ Union a b insidepa || insidepb

p ‘inside’ Intersect a b inside p a && inside p b

p ‘inside’ Invert a not (inside p a)

More interesting run function:
render to ASCll-art

Some action

module Render where
import Shape

data Window = Window

{bottomLeft .. Point

, topRight . Point

, resolution o (Int, Int)
}

defaultWindow :: Window
pixels :: Window -> [[Point]]

render :: Window -> Shape -> String
render win a = unlines $ map (concatMap putPixel) (pixels win)
where
putPixel p | p “inside" a ‘"
| otherwise v

module Animate where
import Shape

import Render

import Signal

animate :: Window -> Time -> Time -> Signal Shape -> 10 ()

* Go live!

Discussion summary

» Different kinds of operations

. Adding coloured shapes — constructor functions / combinators / run functions

- Go back and discuss what changes - primitive / derived

would need to be made * Implementation styles

« Bad shallow implementations — Shallow - representation given by semantics

—Looking at the render run function we — Deep - representation given by operations

might decide to go for « Remember

: — Compositionality
newtype Shape = Shape (Window -> String))
. . . — Abstraction

— Discuss the problems with this

Implementation
» Other questions/comments..?

