
Algorithms and Datastructures

TDA143 Programmerande System

February 10, 2012

Birgit Grohe

What is this lecture about?

• What is an algorithm - definition and examples

• Algorithms analysis - efficiency and correctness

• Searching and Sorting

• Algorithms and problem solving

• A difficult standard problem: TSP

• Construction of algorithms: algorithm design principles

• Datastructures

• A datastructure for searching: binary search tree

• Is it possible to make money with datastructures and

algorithms?

• Summary

2

Why Algorithms?

Because with the help of algorithms, we can solve many different

problems:

• Construct a fast search engine (google, yahoo)

• Sort huge lists of students alphabetically

• Construct schedules for pilots and aircrafts for an airline

• Code and decode messages

• Data compression

• Find the shortest path in a network (e.g. västtrafik)

• . . .

3

What is an Algorithm?

Informal description:

A set of steps that defines how a task is performed.

Formal definition:

An algorithm is an ordered set of unambiguous, executable steps

that defines a terminating process.

[Brookshear: Computer Science, an overview]

4

An Algorithm and its Representation

Algorithm: abstract idea for solving a problem

Representation: formulation of the abstract idea by using e.g.

• English,

• algebraic formulae,

• pseudocode,

• programs,

• diagrams or pictures, . . .

Example: Convert a temperature given in Celsius to Fahrenheit.

• Multiply the temperature reading in Celsius by 9
5 and add 32

to the product.

• F = 9
5C + 32

5

More Examples for Algorithms and their

representation

Example 1: Shelling Peas

Example 2: Folding a bird from a square piece of paper

Brookshear, chapter 4 ’Algorithms’

6

Pseudocode: The Sequential Search Algorithm

Given a sorted list with n > 0 elements.

procedure SequentialSearch (List,Value){

while(entries left to be considered) {

do TestEntry ← next entry from List

if (Value = TestEntry) then return ’Search successful’

}

return ’Search failed’

}

Primitives:

assignment: TestEntry ← next entry from List

loop: while (condition) do (action)

if (condition) then (action1) else (action2)

7

Analysis of Algorithms

Given a problem and a (terminating) algorithm. Then the analysis

of algorithms includes:

• correctness: does the algorithm solve the problem?

• efficiency: what is the running time of the algorithm? In the

best case, the worst case and the average case?

The running time is measured in number of unit operations

(addition, multiplication, assignment, comparison, etc.), not in

seconds.

Usually, not the exact nr of operations is considered, but the

asymptotic complexity. Notation O() or Θ().

8

Running time of the Sequential Search Algorithm

For lists of length n ≥ 2:

Number of operations in the best case: 1 + 1 + 1 + 1 = 4

Number of operations in the worst case: 3(n− 1) + 1

Number of operations in the average case: ca 3n/2

Is there a better algorithm?

9

The Binary Search Algorithm

Given a sorted list with n > 0 elements:

procedure BinSearch (List,Value){

if (List empty)

then return ’Search failed’

else

(Select the middle entry from List and call it TestEntry)

if (Value = TestEntry) return ’Search successful’

if (Value > TestEntry) BinSearch(RightHalfOfList, Value)

if (Value < TestEntry) BinSearch(LeftHalfOfList, Value)

}

10

Running time of the Binary Search Algorithm

For lists of length n ≥ 2

Number of operations in the best case: 1 + 1 + 2 = 4

Number of operations in the worst case: 1 + 2(log2 n) + 2

11

Algorithm Choice: Does it Make Any Difference?

Example: Given a database with 30.000 student’s records sorted by

their id-numbers. How long does it take to check the record of

10.000 students given her or his personal number? We assume that

one comparison takes 1 ms.

Sequential Search: 45 sec/student (on average); total ca 5 dygn

Binary Search: 0.033 sec/student (worst case): totalt 5,5 min

12

Insertion Sort

Task: Sort a list of N > 2 entries (e.g. strings) i increasing order.

procedure InsertionSort (List){

N ← 2

while (N < LengthOfList) do

Select the Nth entry in the List as the pivot entry

Move the pivot to a temporary location leaving a hole in the list

while ((exists entry above the hole) and (entry > pivot)) do

Move the entry above the hole down into the hole

Move the pivot entry into the hole in the List

N ← N + 1

}

13

Running time of the Insertion Sort Algorithm

For lists of length n ≥ 2

Best case: 1 + 3(n− 1)→ O(n)

Worst case (if the list is in reverse order):

1 + 3(1 + 2 + 3 + 4 + . . . + n− 1) + (n− 1) = 3n(n−1)
2 + n→ O(n · n)

Is there a faster sorting algorithm?

14

Algorithms and Problem Solving

George Polya’s 4 problem solving phases:

1. Understand the problem.

2. Devise a plan for solving the problem (get an idea for an

algorithm or find a similar, already solved problem).

3. Carry out the plan (formulate the algorithm and represent it as

a program).

4. Evaluate the solution for accuracy and for its potential tool for

solving other problems.

To solve a (difficult) problem, it is often necessary to go through all

phases several times.

15

Algorithms and Problem Solving

Warning!

Some problems are unsolvable (’undecidable’), and some problems

are ’difficult’ !

And many are already solved - so called ’Standard Problems’.

16

Problem Solving: An example

Person A should guess the age of person B’s three children. B tells

A that the product of the children’s ages is 36. B requests another

clue. B tells A the sum of the children’s ages. Again, A replies that

another clue is needed and finally B tells A that the oldest child

plays piano.a

Products Sums

(1, 1, 36) (1, 6, 6) 1 + 1 + 36 = 38 1 + 6 + 6 = 13

(1, 2, 18) (2, 2, 9) 1 + 2 + 18 = 21 2 + 2 + 9 = 13

(1, 3, 12) (2, 3, 6) 1 + 3 + 12 = 16 2 + 3 + 6 = 11

(1, 4, 9) (3, 3, 4) 1 + 4 + 9 = 14 3 + 3 + 4 = 10

aBrookshear

17

The Travelling Salesperson Problem (TSP)

Given n cities and distances between them. Find the shortest round

tour, i.e. visit each city exactly once and return to the starting city.

B

31

1

1

100

2

A

C

E

D

2 2

2

2

18

TSP (continued)

The TSP is a typical example for a ’difficult’ problem. Difficult

means that no one has found an efficient, i.e. (polynomial),

algorithm despite of extensive researcha.

The theory of NP-complete (’difficult’) problems is an important

research field in algorithms.

All algorithms for solving the TSP more or less enumerate all tours

and pick the best, there are O(n!) tours.

Large problems can only be solved approximatively.

aTSP homepage: http://www.tsp.gatech.edu

19

Construction of Algorithms: Design Principles

Algorithm design principles:

• Greedy

• Divide-and-Conquer

• Dynamic Programming

• Complete search: enumerate all possible solutions explicitly or

implicitly

• Heuristics

• . . .

[Philosophical aspect in algorithms: Are new algorithms discovered

or created? What about patents for algorithms?]

20

Merge Sort: An Example for Divide-and-Conquer

Idea: Divide an unsorted list into halves, sort each half recursively.

Then combine the two smaller sorted list into one list again

(’merge’).

procedure MergeSort (List){

if LengthOfList ≥ 2

then divide list into two halves

MergeSort (RightHalf)

MergeSort (LeftHalf)

Merge (RightHalf, LeftHalf)

Running time of Merge for a list of n elements: 2n+1.

Running time of Mergesort: O(n log n) (better than Insertion Sort!)

21

Datastructures

Goal: Provide convenient ways of accessing data storage.

Other issues in datastructures:

• abstraction

• static versus dynamic structures

• pointers

Most programming languages provide a number of basic

datastructures: arrays, lists, etc.

22

Datastructures and Algorithms

Implementing (and analysing) an algorithm requires datastructures.

Algorithm + suitable datastructures → fast program

Algorithm + unsuitable datastructures → slow program

Tight relation of datastructures and algorithms:

Some algorithms are inspired by the existence of special

datastructures – datastructures are invented to support solving a

specific algorithmic problem.

Development of datastructures and algorithms driven by efficiency.

23

Datastructures

• arrays

• lists

• stacks

• queues

• trees

• graphs

• sets

• dictionaries

• combined datastructures

• . . .

24

Stacks

Example: Researcher at Chalmers processing a number of tasks in

LIFO (last in first out) manner.

Conceptual structure: a pile of tasks.

Possible operations: add or remove a task

Implementation:

• Reserve a large enough block of memory

• Pointer top points to the item on the top of the pile

• Function push adds an item to the stack (top-pointer is

adjusted)

• Function pop removes the top item (top-pointer is adjusted)

25

Stacks (continued)

Other applications: printing a list in reverse order, bookkeeping in

Backtracking procedures, etc.

Note: Even if a stack is used as a dynamic structure, the

underlying structure is a static array (so the stack can be ’full’).

It is possible to choose a dynamic array instead of a static array.

26

Queues

Example: Researcher at Chalmers processing a number of tasks in

FIFO (first in first out) manner.

Conceptual structure: a queue of tasks.

Possible operations: remove a task from the front or add a task at

the tail.

Implementation:

• as a double linked list

• as a static/dynamic array using a head- and a tail-pointer

Active queues, even small ones, consume a lot of memory → cyclic

queues.

27

Trees

Some terminology

node

root node

leaf

leaf

leaf

subtree

More terminology: parent, child, siblings

28

Trees (continued)

Example: Store names of persons.

Possible operations: search for a name, print all names in

alphabetical order, insert a new name

Conceptual structure: Binary search tree (property: for every node,

all nodes in the left subtree have value less or equal and all nodes in

the right subtree have value greater or equal than the node’s value).

29

Binary Search (revisited)

procedure BinSearch (Tree, Value){

if (root pointer = NIL)

then return ’Search failed’

else

(TestEntry ← value root node)

if (Value = TestEntry) return ’Search successful’

if (Value > TestEntry)

then BinSearch(RightSubtree, Value)

else BinSearch(LeftSubtree, Value)

}

30

LEDA: Library of Efficient Data Types and

Algorithms

LEDA program package developed by the researchers K. Mehlhorn

and S. Näher starting in 1988

Goals: Provide efficient implementations of basic and advanced

datastructures to

• save users from reinventing datastructures possibly loosing

efficiency

• speed up transfer of research into practice

Now commercial product sold by ‘Algorithmic Solutions GmbH’

http://www.algorithmic-solutions.com/

31

Jeppesen (Carmen Systems): A Company built

on Algorithms

Jeppesen, Boeing (former Carmen Systems) Gothenburg

Software for Airline Scheduling problems (crew pairing, rostering

and fleet assignment)

Their oldest product, the crew pairing solver, contains a 15-year

old algorithm designed by Dag Wedelin, Associate Professor at

Chalmers, Computing Science.

The software is used by many major European airlines and railway

companies, e.g. LH, SAS, British Airways, Spanair, Air France,

northwest airlines, iberia, KLM, Finnair, Deutsche Bahn, SJ . . .

32

Summary

• Algorithms is an important part of Problem Solving.

• Datastructures are necessary tools for efficient implementation

of algorithms.

• There exist a large number of standard problems with already

known solutions.

• Many problems are difficult to solve (e.g. TSP) ← Theory of

NP-completeness. Some problems are not solvable at all.

• Use algorithm design principles for constructing algorithms!

• Algorithms is both of theoretical AND practical interest.

• Ethical issues in algorithms: does the inventor of an algorithm

or the programmer have any responsibility for what the

algorithm/program is used for?

33

Literature

J.G.Brookshear, Computer Science: An overview. (chapter 5 and 8)

Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms

Brassard, Bratley: Fundamentals of Algorithmics

G. Polya: How to Solve it

http://www.jeppesen.com

Mehlhorn och Näher: LEDA

34

