
Speed, Innovation and Simplicity
 through Software Architecture

Jan Bosch
Professor of Software Engineering
Chalmers University of Technology
Gothenburg, Sweden.
www.janbosch.com

February 2012
Industrial Engineering and Management
Guest lecture

“If you are not moving at the
speed of the marketplace you’re
already dead – you just haven’t

stopped breathing yet”

Jack Welch

When a subject becomes totally obsolete
we make it a required course

Peter F. Drucker

(the man who invented management)

If you think education is expensive,
try ignorance

Derek Bok

(former president of Harvard University)

On Education …

Three Key Take-Aways
•  Increasing SPEED trumps ANY other improvement R&D

can provide to the company – the goal is continuous
deployment of new functionality

•  Software engineering is at an inflection point – from
“integration-oriented” to “composition-oriented” software
engineering

•  Software architecture is key to build delightful products
in the context of software ecosystems

Overview
•  Vem	
 är	
 jag?	
 Wie	
 ben	
 ik?	
 Who	
 am	
 I?	

•  Trends	
 in	
 So7ware:	
 Need	
 for	
 Speed	

•  Innova>on	
 Experiment	
 Systems	

•  So7ware	
 Ecosystems	

•  Architecture	
 &	
 Scale	

•  Implica>ons	
 for	
 ICT	
 Professionals	

•  Conclusion	

From Research to Industry

Head of research lab
(Nokia, Finland)

Industrial
research

Engineering Process
(Intuit, USA)

Industrial
development

Professor of software
engineering
(RuG, Netherlands)
(BIT, Sweden)

Academia
(+ consulting)

Open Innovation
(Intuit, USA)

Innovation

Software Center @ Chalmers
•  Mission: Improve the software engineering capability of

the Nordic Software-Intensive Industry with an order of
magnitude

•  Theme: Fast, continuous deployment of customer value
•  Founding members

•  Dual success metrics
•  Academic excellence
•  Tangible industrial impact

Overview
•  Vem	
 är	
 jag?	
 Wie	
 ben	
 ik?	
 Who	
 am	
 I?	

•  Trends	
 in	
 So7ware:	
 Need	
 for	
 Speed	

•  Innova>on	
 Experiment	
 Systems	

•  So7ware	
 Ecosystems	

•  Architecture	
 &	
 Scale	

•  Implica>ons	
 for	
 ICT	
 Professionals	

•  Conclusion	

Trend: Products to Services

Trend: Capitalism 3.0

Emerging companies highlight importance
of user contribution and social connectedness

Value Creation Shifts

Level of User Contribution

Trend: Need for Speed

Founded 1984 1995 2004

1M users ~6 years 30 months 10 months

50M users N/A ~80 months ~44 months

Need for Speed in R&D – An Example
•  Company	
 X:	
 R&D	
 is	
 10%	
 of	
 revenue,	
 e.g.	
 100M$	
 for	
 a	
 1B$	

product	

•  New	
 product	
 development	
 cycle:	
 12	
 months	

•  Alterna>ve	
 1:	
 improve	
 efficiency	
 of	
 development	
 with	
 10%	

•  10	
 M$	
 reduc>on	
 in	
 development	
 cost	

•  Alterna>ve	
 2:	
 reduce	
 development	
 cycle	
 with	
 10%	

•  100M$	
 add	
 to	
 top	
 line	
 revenue	
 (product	
 starts	
 to	
 sell	
 1.2	

months	
 earlier)	

No efficiency improvement will
outperform cycle time reduction

yearly cycles

roadmapping & req. mgmt

pre-integrated products

build & maintain

global R&D
so.ware	
 product	
 lines	

global	
 so.ware	
 development	

so.ware	
 ecosystems	

	

causing	

	

unacceptable	
 complexity	
 and	
 coordina>on	
 cost	

Traditional Software Engineering

Web 2.0 Rules to SW Development (1/2)

Focus on one thing: Minimize Dependencies

Team size
•  3x3 = 3 persons x 3 months (Google)
•  2 pizza rule (Amazon)
•  Principle: What is required is a team, where the roles are defined and each

member has the right skill for that role, and following a lean, agile, method
— all focused on the customer.

Release cycle
•  Weeks, not months
•  Continuous deployment
•  Principle: short cycles are key for agility, speed and decoupling
Architecture
•  3 API rule
•  Mash-ups and web services
•  Principle: architecture provides simplicity, compositionality and is designed

in parallel with software development

Web 2.0 Rules to SW Development (2/2)

Requirements and Roadmapping
•  Each team (3 persons) announces what they intend to release
•  Some (QA) requirements are shared across the board, e.g.

performance, latency, etc.
•  Principle: the cost of overlapping teams is much lower than

the cost of synchronized, planned roadmaps and plans
Process
•  CMMi and other process maturity approaches address the

symptoms, not the root cause
•  Control is a very expensive illusion causing LOTS of

inefficiency in the system
•  Principle: Architecture, not process, should manage

coordination and alignment

From the Cathedral to the Bazaar

Need for Speed - Principles
Team
•  2 pizza’s
•  self-selected, directed and managed
•  quantitative output metrics

Architecture
•  simplicity – 3 API rule
•  backward compatibility – no versions!
•  focus on compositionality

Release process
•  continuous, independent deployment
•  all the way to customers – installed base
•  measure usage to feed back into development

Overview
•  Vem	
 är	
 jag?	
 Wie	
 ben	
 ik?	
 Who	
 am	
 I?	

•  Trends	
 in	
 So7ware:	
 Need	
 for	
 Speed	

•  Innova>on	
 Experiment	
 Systems	

•  So7ware	
 Ecosystems	

•  Architecture	
 &	
 Scale	

•  Implica>ons	
 for	
 ICT	
 Professionals	

•  Conclusion	

What Do These Product Have in Common?

Example: Apple
The Myth The Reality
Inspired
innovation

Create and winnow 10
pixel-perfect prototypes

Inspired design Build a better backstory
(intricate layers of business
design behind the products

Brilliantly inspired
marketing

Engineer the perfect
customer experience to
create customer experience
and buzz

Reference: http://blogs.hbr.org/cs/2011/08/steve_jobs_and_the_myth_of_eur.html

R&D as an Experiment System

Decisions should be based on DATA, not opinions

Learning: the company running the most experiments
against the lowest cost per experiment wins

R&D iteration
(2-4 weeks)

Installed Base
(products @
customers) Three types of functionality

•  Customer-requested
•  Strategy driven
•  Experiments

Usage and other data

Decide on new hypotheses
to test based on data, ideas,

strategy and customer requests

Goal: increase the number of experiments (with customers) with an
order of magnitude to ultimately accelerate organic growth

Stairway to Heaven

New Products

Product Features

Scope of Experimentation

Marketing

Stages and Techniques
Pre-Development Development Evolution
BASES testing Independently deployed

extensions
Random selection of
versions

Advertising Feature alpha Instrumentation of usage
metrics

Solution jams Product alpha Surveys
Mock-ups Labs website Ethnographic studies

Product beta

Innovation Approaches

Customer
driven

innovation

Technology
driven

innovation

Strategy
driven

innovation

Overview
•  Vem	
 är	
 jag?	
 Wie	
 ben	
 ik?	
 Who	
 am	
 I?	

•  Trends	
 in	
 So7ware:	
 Need	
 for	
 Speed	

•  Innova>on	
 Experiment	
 Systems	

•  So7ware	
 Ecosystems	

•  Architecture	
 &	
 Scale	

•  Implica>ons	
 for	
 ICT	
 Professionals	

•  Conclusion	

Towards Web 3.0

“My	
 predic>on	
 would	
 be	
 that	
 Web	
 3.0	
 will	
 ul>mately	
 been	
 seen	
 as	
 applica>ons	
 which	
 are	
 pieced	

together.	
 There	
 are	
 a	
 number	
 of	
 characteris>cs:	
 the	
 applica>ons	
 are	
 rela>vely	
 small,	
 the	
 data	
 is	
 in	
 the	

cloud,	
 the	
 applica>ons	
 can	
 run	
 on	
 any	
 device,	
 PC	
 or	
 mobile	
 phone,	
 the	
 applica>ons	
 are	
 very	
 fast	
 and	

they're	
 very	
 customizable.	
 Furthermore,	
 the	
 applica>ons	
 are	
 distributed	
 virally:	
 literally	
 by	
 social	

networks,	
 by	
 email.	
 You	
 won't	
 go	
 to	
 the	
 store	
 and	
 purchase	
 them...	
 That's	
 a	
 very	
 different	
 applica>on	

model	
 than	
 we've	
 ever	
 seen	
 in	
 compu>ng.”—Eric	
 Schmidt	

Evolution of Development Approaches

platform

application

traditional

componentized
platform

offering

contemporary

ecosystem
platform

each customer his/her offering

the vision

3rd party asset

prosumer asset

Software Ecosystem?
•  Here’s	
 a	
 try:	
 A	
 so7ware	
 ecosystem	
 consists	
 of	
 a	
 so7ware	

pladorm,	
 a	
 set	
 of	
 internal	
 and	
 external	
 developers	
 and	
 a	

community	
 of	
 domain	
 experts	
 in	
 service	
 to	
 a	
 community	
 of	

users	
 that	
 compose	
 relevant	
 solu>on	
 elements	
 to	
 sa>sfy	
 their	

needs.	

•  Some	
 more	
 detail:	

•  So.ware	
 pla@orm:	
 A	
 hierarchical	
 set	
 of	
 shared	
 so7ware	
 components	

providing	
 func>onality	
 that	
 is	
 required	
 and	
 common	
 for	
 the	
 developers	

construc>ng	
 solu>ons	
 on	
 top	
 of	
 the	
 pladorm.	

•  Evolu>on:	
 Over	
 >me,	
 the	
 func>onality	
 in	
 the	
 ecosystem	
 commodi>zes	

and	
 flows	
 from	
 unique	
 solu>ons	
 to	
 the	
 pladorm.	

•  Developers:	
 Although	
 internal	
 and	
 external	
 developers	
 use	
 the	

pladorm	
 differently,	
 the	
 pladorm	
 o7en	
 allows	
 developers	
 to	
 build	
 on	

top	
 of	
 each	
 other’s	
 results.	

•  Composi>on:	
 Users	
 are	
 able	
 to	
 compose	
 their	
 own	
 solu>ons	
 by	

selec>ng	
 various	
 elements	
 into	
 a	
 configura>on	
 that	
 suits	
 their	
 needs	

op>mally.	

Why Software Ecosystems?
•  Increase	
 value	
 of	
 the	
 core	
 offering	
 to	
 exis>ng	
 users	

•  Increase	
 ajrac>veness	
 for	
 new	
 users	

•  Increase	
 “s>ckiness”	
 of	
 the	
 applica>on	
 pladorm,	
 i.e.	
 it	
 is	

harder	
 to	
 change	
 the	
 applica>on	
 pladorm	

•  Accelerate	
 innova>on	
 through	
 open	
 innova>on	
 in	
 the	

ecosystem	

•  Collaborate	
 with	
 partners	
 in	
 the	
 ecosystems	
 to	
 share	
 cost	
 of	

innova>on	

•  Pladormize	
 func>onality	
 developed	
 by	
 partners	
 in	
 the	

ecosystem	
 (once	
 success	
 has	
 been	
 proven)	

•  Decrease	
 TCO	
 for	
 commodi>zing	
 func>onality	
 by	
 sharing	
 the	

maintenance	
 with	
 ecosystem	
 partners	

29

Taxonomy of Software Ecosystems

30

Overview
•  Vem	
 är	
 jag?	
 Wie	
 ben	
 ik?	
 Who	
 am	
 I?	

•  Trends	
 in	
 So7ware:	
 Need	
 for	
 Speed	

•  Innova>on	
 Experiment	
 Systems	

•  So7ware	
 Ecosystems	

•  Architecture	
 &	
 Scale	

•  Implica>ons	
 for	
 ICT	
 Professionals	

•  Conclusion	

Role of Software Architecture
•  Simplify, Simplify, Simplify

•  Decoupling

•  Components
•  Teams
•  Organizations

•  Lean and agile at scale

•  End to end quality requirements

•  Fight design erosion

Simplify, Simplify, Simplify
•  Each architectural design

decision adds design rules and
constraints that cause
complexity

•  Insist on simplicity
(3 APIs rule)

•  How
•  Push down in the stack
•  Hide
•  Automate
•  Redesign

Decouple Teams and Organizations
•  Interconnected teams

and organizations
asymptotically reduce
productivity to zero

•  Decouple teams and
make sure no continuous
interaction is needed

•  How
•  Continuous deployment
•  No versions
•  No concurrent

development

Decoupling: No Versions!

Shared Component,
e.g. Engine, etc.
V1.01

Provided interface
(SOA style, maximal
decoupling)

required interface

Configuration
 interface

Syntactically and semantically equivalent
until a deliberate sunset is planned No offering or shared component may

depend on the implementation

Automated test suites
for each interface

Shared Component,
e.g. Engine, etc.
V1.02

Frequent (4 week) releases of
production quality component

Respect Independent Deployment:
still usable in context where this interface can not be bound

Decouple Components and Teams
Sequential feature development (90%)

Concurrent development, independent deployment enforced (8%)

Exploratory development (2%)

platform

engine

offering

iteration i iteration i+1 iteration i+2

Fx

Fy

Fz

1

1

2

Fy

2

Fx

Fz

Independent deployment!!!

3

Fx

Fy

Fz

3

stubs

Strive For Continuous Deployment
•  Software engineer checks in code => system

compiles, links, tests and deploys the new code

•  The automated QA infrastructure, NOT the
engineer, is responsible for making sure the
system does not go down

•  If that’s too much, aim for Independent
Deployment

•  If that’s too much, aim for Release Trains

Lean and Agile at Scale
•  Achieving lean & agile in large, legacy

systems with large R&D organization
considered an oxymoron

•  Google, Amazon and Intuit are
examples that it can be done

•  How
•  Small teams
•  Short cycles
•  Direct customer connection
•  Clear success metrics

End to End Quality Requirements

Evolve Architecture; Fight Erosion

Overview
•  Vem	
 är	
 jag?	
 Wie	
 ben	
 ik?	
 Who	
 am	
 I?	

•  Trends	
 in	
 So7ware:	
 Need	
 for	
 Speed	

•  Innova>on	
 Experiment	
 Systems	

•  So7ware	
 Ecosystems	

•  Architecture	
 &	
 Scale	

•  Implica>ons	
 for	
 ICT	
 Professionals	

•  Conclusion	

Implications for ICT Engineers

T I Multi-disciplinary
Learn continuously
Self-starting
Love customers
Understand business
Drive to metrics
Build networks
Move fast
Entrepreneurial

Shadow Beliefs
•  Humans are better than machines in identifying known and new reliability

issues – we are building business critical systems, after all!
My experience: data always trumps opinion; test and validation systems pre-
deployment and extensive data-collection post-deployment inform decision
making

•  Software-intensive systems (large, complex, tough requirements) are
different and approaches from other domains do not apply

My experience: system failure is devastating in several industries and
avoided in Internet systems while adopting agile and continuous deployment
•  We should avoid or delay adoption of new, more efficient engineering

approaches
My experience: getting first to market with new functionality that closely
aligns to customer needs is a significant competitive advantage that drives
growth and results in market leadership

Guidelines
1.  Modularize the system in critical and (less or) not critical parts
2.  Adopt agile and continuous deployment approaches for the not (so)

critical part first
3.  Deeply engage with customers to develop optimal solutions to their

real pain points
4.  Invest in testing infrastructure that continuously and thoroughly tests

systems with no human involvement
5.  Instrument systems for pre- and post-deployment data collection,

concerning at least reliability and usage metrics
6.  Architect your systems for maximum decoupling and modularization

between different components to allow for independent deployment
7.  Replace commoditizing functionality with Open Source or COTS

components; focus R&D on truly differentiating parts

Overview
•  Vem	
 är	
 jag?	
 Wie	
 ben	
 ik?	
 Who	
 am	
 I?	

•  Trends	
 in	
 So7ware:	
 Need	
 for	
 Speed	

•  Innova>on	
 Experiment	
 Systems	

•  So7ware	
 Ecosystems	

•  Architecture	
 &	
 Scale	

•  Implica>ons	
 for	
 ICT	
 Professionals	

•  Conclusion	

Speed
Increasing SPEED trumps ANY other improvement R&D
can provide to the company – the goal is continuous
deployment of new functionality

•  If you’re not a front-line engineer, there is only ONE
measure that justifies your existence: how have you
helped teams move faster?

•  Don’t optimize efficiency, optimize speed

Inflection Point
•  Software engineering is at an inflection point – from

“integration-oriented” to “composition-oriented” software
engineering

•  Design for automated compositionality, not manual
integration

•  Minimize dependencies
•  Focus on small teams of engineers, give them direction

and get out of their way

Software Architecture 2.0
•  Software architecture is is central in allowing for

independent, continuous deployment to customers

•  Architecture happens (in parallel)
•  A la Thoreau: Simplify, Simplify, Simplify
•  Decouple components, decouple teams and decouple

organizations
•  Lean and agile at scale

Not My Job?!

Strong LEADERSHIP needed from YOU

Q&A

Thank you!

