Programmerade system
TDA143, 2012-2013
Lecture on Databases

Material in course textbook

“Computer Science: An Overview”
9th /10th /11t Edition, J. Glenn Brookshear

Chapter 9
Graham Kemp
kemp@chalmers.se
Room 6475, EDIT Building
http://www.cse.chalmers.se/~kemp/

Why study databases? Examples

» Banking
— Drove the development of DBMS

* Industry

Databasesare
everywhere!

— Inventories, personnel records, sales ...
— Production Control
— Testdata
» Research
— Sensor data
— Geographical data
— Laboratory information management systems
— Biological data (e.g. genome data)

File-oriented information system

Customer Payroll Employee Inventory Sales
records records records records records

Customer . .
service Payroll Personnel | |Purchasing| | Marketing

department department| (department| |department| |department

Problems with working with files

» Redundancy
— Updates
— Wasted space

» Changing a data format will require all
application programs that read/write these
files to be changed.

+ Sharing information between departments
can be difficult.

Database-oriented information

Custo.mer Marketing
service department
department
Integrated
database
Payroll | — T Purchasing
department department
Personnel
department

A database is ...

« a collection of data

» managed by specialised software called a
database management system (DBMS)
(or, informally, a “database system”)

» needed for large amounts of persistent,
structured, reliable and shared data

Using a DBMS: an overview

‘ Application Program

Database Management
System

Centralised control of data

» amount of redundancy can be reduced
— less inconsistency in the stored data
« stored data can be shared
« standards can be enforced
 security restrictions can be applied
« data integrity can be maintained
— validation done in one place
« conflicting requirements can be balanced
+ provides data independence

— can change storage structure without affecting
applications

Motivation for database systems

Needed for large amounts of persistent, structured, reliable and shared data
(Ted Codd, 1973)

+ Large amounts:
— needs indexing for fast access
— needs a load utility
Persistent:
— needs schema definition of types which evolves
Structured:
— storage schema held with data
— query language (e.g. SQL) independent of storage
Shared:
— locking mechanism for concurrent update
— access control via DBMS
— centralised integrity checking
Reliable:
— changes to disc pages are logged
— commit protects against program of disc crash
— can undo (rollback) uncommitted updates

Traditional File Structures

A short digression ...

UNIX file management

Actual organisation is hidden

+ Just as the file management system in an
operating system gives the users the
illusion that a text file is stored on disc as a
long consecutive sequence of characters

* ... a database management system gives
the users the illusion that their data are
stored on disc in accordance with a data
model.

Data models

« Storing data in a computer system
requires describing the data according to
some data model, in a form which can be
represented directly within the computer.

» A data model specifies the rules
according to which data are structured and
also the associated operations that are
permitted.

Data models: brief overview

* “No data model”
— Flat files

+ “Classical” data models

— Hierarchical (tree)
— Network (e.g. CODASYL) (graph)
— Relational (Codd, 1970) (tables)

» Semantic data models, e.g.
— Entity-Relationship model (Chen, 1976)
— Functional Data Model (Shipman, 1981)
— SDM (Hammer and McLeod, 1981)

Relational DBMSs

 Very simple model
« Familiar tabular structure

» Has a good theoretical foundation from
mathematics (set theory)
+ Industrial strength implementations, e.g.

— Oracle, Sybase, MySQL, PostgreSQL,
Microsoft SQL Server, DB2 (IBM mainframes)

« Large user community

Relation Schemas

+ In the relational data model, a design
consists of a set of relation schemas.
+ Arelation schema has
—a name, and
— a set of attributes (+ types):

Courses (code, name, teacher)
—

Schema vs Instance

» Schema (or intension or a relation)
— name and attributes of a relation

Courses (code, name, teacher)
+ Instances (or extension of a relation)

— the actual data
— aset of tuples:

From schema to database

» The relations of the database schema become
the tables when we implement the database in a
DBMS. The tuples become the rows:

Courses (code, name, teacher)

{ ('TDA357’, ’'Databases’, ’'Niklas Broberg’),
(’TINO90’, ’Algorithms’, ’‘Devdatt Dubhashi’) } code name teacher
"TDA357 'Databases’ ‘Niklas Broberg’
"TINO9O "Algorithms’ "Devatt Dubhashi’
Keys Composite keys

+ Relations have keys — attributes whose
values uniquely determine the values of all
other attributes in the relation.

Courses (code, name, teacher)

{ (' TDA357’, ’'Databases’, ’'Niklas Broberg’),
("TDE ithms/-—-DEvHATE Dubhashi’) }

» Keys can consist of several attributes

Courses (code, period, name, teacher)

{ (' TDA357’, 2, ’'Databases’, ’'Graham Kemp'),
(' TDA357’, 3, ’'Databases’, ’Niklas Broberg’)}

Schemas and subschemas

» A schema is a description of the entire
database structure.

» A subschema is a description of only a
part of the database structure.
— Tailored to the needs of a user group
— Controls access to data

Database design

» We design the conceptual model for our
database using a high-level data model
like the Enitity-Relationship model ...

+ ... then we translate this design to the

relational model (for implementation in an
RDBMS).

Enitity-Relationship Diagram

Example:

Ceoded
Creacher>

« A course has lectures in a room.

« Acourse is related to a room by the fact that the course has lectures
in that room.

« Arelationship is often named with a verb (e.g. HasLecturesin)

Translation to relations

* A relationship between two entities is
translated into a relation, where the
attributes are the keys of the related

entities.

CeacheD

Translation to relations

* A relationship between two entities is
translated into a relation, where the
attributes are the keys of the related

entities.

CeacheD

Courses (code, name, teacher)

|:> Rooms (name, #seats)

LecturesIn(code, name)

Relational operators (1)

+ Selection
— Choose rows from a relation
— State condition that rows must satisfy

o-condition(T)
Examples:
Ogeats>100(ROOMS)

O code="TDA143" AND day="Friday")(L€CtUres)

Relational operators (2)

+ Projection
— Choose columns from a relation
— State which columns (attributes)

TToqe(CoUurses)
1Tname,seals(RoomS)

Examples:

Relational operators (3)

Ry x R,
— Cartesian product
— Combine each row of Ry with each row of R,

R1 Ncondi'(ion RZ
— join operator

— Combine row of R, with each row of R, if the
condition is true

R1 Mcondition F{2 = 0condition(R1 X Rz) |

SQL

» SQL = Structured Query Language

A very high-level declarative language.

— Specify what information you want, not how to
get that information (like you would in e.g.

SELECT-FROM-WHERE

+ Basic structure of an SQL query:

SELECT attributes
FROM tables
WHERE tests over rows

Java). SELECT A
« Based on Relational Algebra FROM T <—> a(0(T))
WHERE C
Example: Example:
course | per teacher course | per teacher
. TDA357 |2 Niklas Broberg . TDA357 |2 Niklas Broberg
GivenCourses = TDA357 |4 | Rogardt Heldal GivenCourses = TDA357 |4 | Rogardt Heldal
TINO9O 1 Devdatt Dubhashi TINO9O 1 Devdatt Dubhashi
SELECT * SELECT *

FROM GivenCourses
WHERE course = 'TDA357';

FROM GivenCourses
WHERE course = 'TDA357';

Result = Result = course | per . teacher
Wh at ') TDA357 |2 Niklas Broberg
TDA357 |4 Rogardt Heldal
Example: Example:
course | per teacher course | per teacher
. TDA357 |2 Niklas Broberg . TDA357 |2 Niklas Broberg
GivenCourses = TDA357 |4 | Rogardt Heldal GivenCourses = TDA357 |4 | Rogardt Heldal
TINO90 1 Devdatt Dubhashi TINO90 1 Devdatt Dubhashi

SELECT course, teacher
FROM GivenCourses
WHERE course = 'TDA357';

R It =
esu What?

SELECT course, teacher
FROM GivenCourses
WHERE course = 'TDA357';

course teacher
TDA357 | Niklas Broberg
TDA357 | Rogardt Heldal

Result =

Example:

SELECT code, name, period

FROM Courses, GivenCourses

WHERE teacher = ’'Niklas Broberg’
AND code = course;

GivenCourses
Courses course | per teacher
code name TDA357 2 Niklas Broberg
TDA357 | Databases TDA357 4 Rogardt Heldal
TIN090 | Algorithms TINOSO 1 Devdatt Dubhashi

Trcode,name,period

(Oteacher=’NikIas Broberg’ & code = course

(Courses x GivenCourses))

Example:

SELECT code, name, period
FROM Courses, GivenCourses

WHERE teacher = ’'Niklas Broberg’
AND code = course;
code name | course | per teacher

TDA357 | Databases | TDA357 Niklas Broberg
TDA357 | Databases | TDA357 Rogardt Heldal
TDA357 | Databases | TINOSO Devdatt Dubhashi

2
4
1
TINO90 | Algorithms | TDA357 2 Niklas Broberg
4
1

TINO90 | Algorithms | TDA357 Rogardt Heldal
TINO90 | Algorithms | TINO9O Devdatt Dubhashi

ncodu.namc.pu\od(olcatlvcr: Niklas Broberg’ & code = CU“,SC(CoursesxleenCourses))

Example:

SELECT code, name, period
FROM Courses, GivenCourses

WHERE teacher = ’Niklas Broberg’
AND code = course;

code name | course | per Teacher
TDA357 | Databases | TDA357 2 Niklas Broberg

teacher
Niklas Broberg

name course | per
Databases | TDA357

T oode,name, period (ateacher=‘Niklas Broberg’ & code = mum(Courses x GivenCourses))

Example:

SELECT code, name, period

FROM Courses, GivenCourses

WHERE teacher = ’'Niklas Broberg’
AND code = course;

code name
TDA357 | Databases

code name | per
TDA357 | Databases |2

“code,name,peﬁod(oteacher=‘N\k\as Broberg’ & code = coulse(courses X GivenCourses))

Inserting data

INSERT INTO tablename
VALUES (values for attributes);

INSERT INTO Courses
VALUES (’'TDA357’, ’'Databases’);

code name
TDA357 |Databases

Deletions

DELETE FROM tablename
WHERE test over rows;

DELETE FROM Courses
WHERE code = ’'TDA357';

DELETE FROM Courses;

Updates

UPDATE tablename
SET attribute =
WHERE test over rows

UPDATE GivenCourses
SET teacher = 'Rogardt Heldal’
WHERE code = 'TDA357'

AND period = 4;

Database system architecture

Access Cortrol

Integrity
Checks

More about Databases

TDA357 - Databases

* 7,5 Higher education credits
* Runs twice each year, periods 2 and 3

