
1

Programmerade system

TDA143, 2012-2013
Lecture on Databases

Graham Kemp

kemp@chalmers.se

Room 6475, EDIT Building

http://www.cse.chalmers.se/~kemp/

Material in course textbook

“Computer Science: An Overview”

9th /10th /11th Edition, J. Glenn Brookshear

Chapter 9

Banking, ticket reservations, customer

records, sales records, product records,

inventories, employee records, address

books, demographic records, student

records, course plans, schedules,

surveys, test suites, research data,

genome bank, medicinal records, time

tables, news archives, sports results, e-

commerce, user authentication systems,

web forums, www.imdb.com, the world

wide web, …

Why study databases?

Databases are
everywhere!

Examples

• Banking
– Drove the development of DBMS

• Industry
– Inventories, personnel records, sales …
– Production Control

– Test data

• Research
– Sensor data
– Geographical data

– Laboratory information management systems
– Biological data (e.g. genome data)

File-oriented information system

Payroll

records

Customer

records

Employee

records

Inventory

records

Sales

records

Customer
service

department

Payroll
department

Personnel
department

Marketing
department

Purchasing
department

Problems with working with files

• Redundancy

– Updates

– Wasted space

• Changing a data format will require all

application programs that read/write these
files to be changed.

• Sharing information between departments

can be difficult.

2

Database-oriented information

system

Integrated

database

Customer
service

department

Payroll
department

Personnel
department

Marketing
department

Purchasing
department

A database is …

• a collection of data

• managed by specialised software called a

database management system (DBMS)

(or, informally, a “database system”)

• needed for large amounts of persistent,

structured, reliable and shared data

Using a DBMS: an overview

Database Management SystemApplication Program Centralised control of data

• amount of redundancy can be reduced
– less inconsistency in the stored data

• stored data can be shared

• standards can be enforced

• security restrictions can be applied

• data integrity can be maintained
– validation done in one place

• conflicting requirements can be balanced

• provides data independence
– can change storage structure without affecting

applications

Motivation for database systems
Needed for large amounts of persistent, structured, reliable and shared data
(Ted Codd, 1973)

• Large amounts:
– needs indexing for fast access

– needs a load utility

• Persistent:
– needs schema definition of types which evolves

• Structured:
– storage schema held with data

– query language (e.g. SQL) independent of storage

• Shared:
– locking mechanism for concurrent update

– access control via DBMS
– centralised integrity checking

• Reliable:
– changes to disc pages are logged

– commit protects against program of disc crash

– can undo (rollback) uncommitted updates

Traditional File Structures

A short digression …

3

UNIX file management Actual organisation is hidden

• Just as the file management system in an
operating system gives the users the

illusion that a text file is stored on disc as a

long consecutive sequence of characters

…

• … a database management system gives

the users the illusion that their data are

stored on disc in accordance with a data
model.

Data models

• Storing data in a computer system
requires describing the data according to

some data model, in a form which can be

represented directly within the computer.

• A data model specifies the rules

according to which data are structured and

also the associated operations that are

permitted.

Data models: brief overview

• “No data model”
– Flat files

• “Classical” data models
– Hierarchical (tree)

– Network (e.g. CODASYL) (graph)

– Relational (Codd, 1970) (tables)

• Semantic data models, e.g.
– Entity-Relationship model (Chen, 1976)

– Functional Data Model (Shipman, 1981)

– SDM (Hammer and McLeod, 1981)

Relational DBMSs

• Very simple model

• Familiar tabular structure

• Has a good theoretical foundation from

mathematics (set theory)

• Industrial strength implementations, e.g.

– Oracle, Sybase, MySQL, PostgreSQL,

Microsoft SQL Server, DB2 (IBM mainframes)

• Large user community

Relation Schemas

• In the relational data model, a design
consists of a set of relation schemas.

• A relation schema has

– a name, and

– a set of attributes (+ types):

Courses(code, name, teacher)

name

attributes

4

Schema vs Instance

• Schema (or intension or a relation)
– name and attributes of a relation

Courses(code, name, teacher)

• Instances (or extension of a relation)
– the actual data

– a set of tuples:

{ (’TDA357’, ’Databases’, ’Niklas Broberg’),

(’TIN090’, ’Algorithms’, ’Devdatt Dubhashi’) }

tuples

From schema to database

• The relations of the database schema become

the tables when we implement the database in a

DBMS. The tuples become the rows:

Courses(code, name, teacher)

code name teacher

’TDA357’ ’Databases’ ’Niklas Broberg’

’TIN090’ ’Algorithms’ ’Devatt Dubhashi’

relation schema
table instance

Keys

• Relations have keys – attributes whose
values uniquely determine the values of all

other attributes in the relation.

Courses(code, name, teacher)

{(’TDA357’, ’Databases’, ’Niklas Broberg’),

(’TDA357’, ’Algorithms’, ’Devdatt Dubhashi’)}

key

Composite keys

• Keys can consist of several attributes

Courses(code, period, name, teacher)

{(’TDA357’, 2, ’Databases’, ’Graham Kemp’),

(’TDA357’, 3, ’Databases’, ’Niklas Broberg’)}

Schemas and subschemas

• A schema is a description of the entire
database structure.

• A subschema is a description of only a

part of the database structure.

– Tailored to the needs of a user group

– Controls access to data

Database design

• We design the conceptual model for our
database using a high-level data model

like the Enitity-Relationship model …

• … then we translate this design to the

relational model (for implementation in an
RDBMS).

5

Example:

• A course has lectures in a room.

• A course is related to a room by the fact that the course has lectures
in that room.

• A relationship is often named with a verb (e.g. HasLecturesIn)

Coursename

code

teacher

Room

name

#seatsLecturesIn

Enitity-Relationship Diagram Translation to relations

• A relationship between two entities is
translated into a relation, where the

attributes are the keys of the related

entities.

Coursename

code

teacher

Room

name

#seatsLecturesIn

Courses(code, name, teacher)

Rooms(name, #seats)

LecturesIn(code, name)What?

Translation to relations

• A relationship between two entities is
translated into a relation, where the

attributes are the keys of the related

entities.

Coursename

code

teacher

Room

name

#seatsLecturesIn

Courses(code, name, teacher)

Rooms(name, #seats)

LecturesIn(code, name)

Relational operators (1)

• Selection

– Choose rows from a relation

– State condition that rows must satisfy

Examples:σseats>100(Rooms)σ(code=”TDA143” AND day=”Friday”)(Lectures)

σcondition(T)

Relational operators (2)

• Projection

– Choose columns from a relation

– State which columns (attributes)

Examples:πcode(Courses)πname,seats(Rooms)πA(T)
Relational operators (3)

R1 x R2

– Cartesian product

– Combine each row of R1 with each row of R2

R1 ⋈⋈⋈⋈condition R2

– join operator

– Combine row of R1 with each row of R2 if the

condition is true

R1 ⋈⋈⋈⋈condition R2 = σcondition(R1 x R2)

6

SQL

• SQL = Structured Query Language

• A very high-level declarative language.

– Specify what information you want, not how to

get that information (like you would in e.g.

Java).

• Based on Relational Algebra

SELECT-FROM-WHERE

• Basic structure of an SQL query:

SELECT attributes

FROM tables

WHERE tests over rows

SELECT A

FROM T

WHERE C
πA(σC(T))

Example:

GivenCourses =

SELECT *

FROM GivenCourses

WHERE course = ’TDA357’;

Result =

course per teacher

TDA357 2 Niklas Broberg

TDA357 4 Rogardt Heldal

TIN090 1 Devdatt Dubhashi

course per teacher

TDA357 2 Niklas Broberg

TDA357 4 Rogardt Heldal
What?

Example:

GivenCourses =

SELECT *

FROM GivenCourses

WHERE course = ’TDA357’;

Result =

course per teacher

TDA357 2 Niklas Broberg

TDA357 4 Rogardt Heldal

TIN090 1 Devdatt Dubhashi

course per teacher

TDA357 2 Niklas Broberg

TDA357 4 Rogardt Heldal

Example:

GivenCourses =

SELECT course, teacher

FROM GivenCourses

WHERE course = ’TDA357’;

Result =

course per teacher

TDA357 2 Niklas Broberg

TDA357 4 Rogardt Heldal

TIN090 1 Devdatt Dubhashi

course teacher

TDA357 Niklas Broberg

TDA357 Rogardt Heldal
What?

Example:

GivenCourses =

SELECT course, teacher

FROM GivenCourses

WHERE course = ’TDA357’;

Result =

course per teacher

TDA357 2 Niklas Broberg

TDA357 4 Rogardt Heldal

TIN090 1 Devdatt Dubhashi

course teacher

TDA357 Niklas Broberg

TDA357 Rogardt Heldal

7

Example:

SELECT code, name, period

FROM Courses, GivenCourses

WHERE teacher = ’Niklas Broberg’

AND code = course;

course per teacher

TDA357 2 Niklas Broberg

TDA357 4 Rogardt Heldal

TIN090 1 Devdatt Dubhashi

code name

TDA357 Databases

TIN090 Algorithms

Courses

GivenCoursesπcode,name,period(σteacher=’Niklas Broberg’ & code = course(Courses x GivenCourses))
Example:

SELECT code, name, period

FROM Courses, GivenCourses
WHERE teacher = ’Niklas Broberg’

AND code = course;

code name course per teacher

TDA357 Databases TDA357 2 Niklas Broberg

TDA357 Databases TDA357 4 Rogardt Heldal

TDA357 Databases TIN090 1 Devdatt Dubhashi

TIN090 Algorithms TDA357 2 Niklas Broberg

TIN090 Algorithms TDA357 4 Rogardt Heldal

TIN090 Algorithms TIN090 1 Devdatt Dubhashiπcode,name,period(σteacher=’Niklas Broberg’ & code = course((((Courses x GivenCoursesCourses x GivenCoursesCourses x GivenCoursesCourses x GivenCourses)))))
Example:

SELECT code, name, period

FROM Courses, GivenCourses

WHERE teacher = ’Niklas Broberg’

AND code = course;

code name course per Teacher

TDA357 Databases TDA357 2 Niklas Broberg

TDA357 Databases TDA357 4 Rogardt Heldal

TDA357 Databases TIN090 1 Devdatt Dubhashi

TIN090 Algorithms TDA357 2 Niklas Broberg

TIN090 Algorithms TDA357 4 Rogardt Heldal

TIN090 Algorithms TIN090 1 Devdatt Dubhashiπcode,name,period((((σσσσteacher=’Niklas Broberg’ & code = courseteacher=’Niklas Broberg’ & code = courseteacher=’Niklas Broberg’ & code = courseteacher=’Niklas Broberg’ & code = course(Courses x GivenCourses)))))code name course per teacher

TDA357 Databases TDA357 2 Niklas Broberg

Example:

SELECT code, name, period
FROM Courses, GivenCourses

WHERE teacher = ’Niklas Broberg’

AND code = course;

ππππcode,name,periodcode,name,periodcode,name,periodcode,name,period(σteacher=’Niklas Broberg’ & code = course(Courses x GivenCourses))
code name course per teacher

TDA357 Databases TDA357 2 Niklas Broberg

code name per

TDA357 Databases 2

Inserting data

INSERT INTO tablename

VALUES (values for attributes);

INSERT INTO Courses

VALUES (’TDA357’, ’Databases’);

code name

TDA357 Databases

Deletions

DELETE FROM tablename

WHERE test over rows;

DELETE FROM Courses

WHERE code = ’TDA357’;

DELETE FROM Courses;

8

Updates

UPDATE tablename

SET attribute = ...

WHERE test over rows

UPDATE GivenCourses

SET teacher = ’Rogardt Heldal’

WHERE code = ’TDA357’

AND period = 4;

Database system architecture

More about Databases

TDA357 - Databases

• 7,5 Higher education credits

• Runs twice each year, periods 2 and 3

