Programmerade system TDA143, 2012-2013 Lecture on Databases

Graham Kemp kemp@chalmers.se Room 6475, EDIT Building http://www.cse.chalmers.se/~kemp/

Material in course textbook

"Computer Science: An Overview" 9th/10th/11th Edition, J. Glenn Brookshear

Chapter 9

Examples

- Banking
 - Drove the development of DBMS
- Industry
 - Inventories, personnel records, sales ...
 - Production Control
- Test data
- Research
 - Sensor data
 - Geographical data
 - Laboratory information management systems
 - Biological data (e.g. genome data)

Problems with working with files

- Redundancy
 - Updates
 - Wasted space
- Changing a data format will require all application programs that read/write these files to be changed.
- Sharing information between departments can be difficult.

Motivation for database systems

Needed for large amounts of persistent, structured, reliable and shared data (Ted Codd, 1973) $\,$

- Large amounts:
 - needs indexing for fast access
 needs a load utility
- Persistent: needs schema definition of types which evolves Structured:
- storage schema held with data
- query language (e.g. SQL) independent of storage
- Shared:
- locking mechanism for concurrent update
 access control via DBMS
 centralised integrity checking
- Reliable:
- changes to disc pages are logged commit protects against program of disc crash can undo (rollback) uncommitted updates _

Traditional File Structures

A short digression ...

Actual organisation is hidden

- Just as the file management system in an operating system gives the users the illusion that a text file is stored on disc as a long consecutive sequence of characters
- ... a database management system gives the users the illusion that their data are stored on disc in accordance with a **data model**.

Data models

- Storing data in a computer system requires describing the data according to some data model, in a form which can be represented directly within the computer.
- A **data model** specifies the rules according to which data are structured and also the associated operations that are permitted.

Data models: brief overview

(tree)

(graph)

(tables)

- "No data model"

 Flat files
- "Classical" data models

Hierarchical Network (e.g. CODASYL)

- Relational (Codd, 1970)

• Semantic data models, e.g.

- Entity-Relationship model (Chen, 1976)
- Functional Data Model (Shipman, 1981)
 SDM (Hammer and McLeod, 1981)

Relational DBMSs

- Very simple model
- · Familiar tabular structure
- Has a good theoretical foundation from mathematics (set theory)
- Industrial strength implementations, e.g.
 Oracle, Sybase, MySQL, PostgreSQL, Microsoft SQL Server, DB2 (IBM mainframes)
- Large user community

Relation Schemas In the relational data model, a design consists of a set of relation schemas. A relation schema has a name, and a set of attributes (+ types): Courses (code, name, teacher)

From schema to database • The relations of the database schema become the tables when we implement the database in a DBMS. The tuples become the rows: Courses (code, name, teacher) relation schema table instance code name teacher 'TDA357' 'Databases' 'Niklas Broberg' 'TIN090' 'Algorithms' 'Devatt Dubhashi'

Keys • Relations have keys – attributes whose values uniquely determine the values of all other attributes in the relation. Courses (code, name, teacher) ('TDA357', 'Databases', 'Niklas Broberg'), ('TDA357', 'Algorithms', 'Devdart Dubhashi'))

Schemas and subschemas

- A <u>schema</u> is a description of the entire database structure.
- A <u>subschema</u> is a description of only a part of the database structure.
 - Tailored to the needs of a user group
 - Controls access to data

Database design

- We design the conceptual model for our database using a high-level data model like the Enitity-Relationship model ...
- ... then we translate this design to the relational model (for implementation in an RDBMS).

 $\sigma_{\text{condition}}(T)$

SQL

- SQL = Structured Query Language
- A very high-level *declarative* language.
 - Specify *what* information you want, not *how* to get that information (like you would in e.g. Java).
- Based on Relational Algebra

Г

SELECT-FROM-WHERE • Basic structure of an SQL query: SELECT attributes FROM tables WHERE tests over rows SELECT A FROM T \longrightarrow $\pi_A(\sigma_C(T))$

Example:			·1			
	<u>course</u>	<u>per</u>	teacher			
GivenCourses -	TDA357	2	Niklas Broberg			
Givenoouises =	TDA357	4	Rogardt Heldal			
	TIN090	1	Devdatt Dubhashi			
<pre>SELECT * FROM GivenCourses WHERE course = 'TDA357';</pre>						
Result =	What?					

Example:	-		
	<u>course</u>	per	teacher
CivenCourses	TDA357	2	Niklas Broberg
GivenCourses =	TDA357	4	Rogardt Heldal
	TIN090	1	Devdatt Dubhashi
FROM GivenCours WHERE course = "	ses TDA35	57′;	:
FROM GivenCours WHERE course = " Besult =	ses TDA35	57′; _{per}	teacher
FROM GivenCours WHERE course = ' Result =	TDA35	57'; per	teacher Niklas Broberg
FROM GivenCours WHERE course = Result =	course TDA357 TDA357	57'; per 2 4	teacher Niklas Broberg Rogardt Heldal

Example:	001/700	por	taaabar	
	TDA257	2	Niklas Brobora	
GivenCourses =	TDA357	4	Rogardt Heldal	
	TIN090	1	Dovdatt Dubbashi	
EPOM GivenCours		-		
FROM GivenCours WHERE course =	ses 7 TDA3	57′;		
FROM GivenCours WHERE course =	ses 7 TDA3!	- 57';	eacher	
FROM GivenCours WHERE course = Result =	ses 7 TDA3! course TDA357	57'; te Niklas	eacher Broberg	
FROM GivenCours WHERE course = Result =	Ses ' TDA3 ! <i>course</i> TDA357 TDA357	57';	eacher Broberg dt Heldal	

Example:								
SELECT FROM WHERE	SELECT code, name, period FROM Courses, GivenCourses WHERE teacher = 'Niklas Broberg' AND code = course;							
	code	name	course	per	teacher			
	TDA357	Databases	TDA357	2	Niklas Broberg			
	TDA357	Databases	TDA357	4	Rogardt Heldal			
	TDA357	Databases	TIN090	1	Devdatt Dubhashi			
	TIN090	Algorithms	TDA357	2	Niklas Broberg			
	TIN090	Algorithms	TDA357	4	Rogardt Heldal			
	TIN090	Algorithms	TIN090	1	Devdatt Dubhashi			
$\pi_{code,name,p}$	T _{code,name,period} (O _{teacher='Niklas Broberg' & code = course} (Courses x GivenCourses))							

Updates

```
UPDATE tablename
SET attribute = ...
WHERE test over rows
UPDATE GivenCourses
SET teacher = 'Rogardt Heldal'
WHERE code = 'TDA357'
AND period = 4;
```

Database system architecture

More about Databases

TDA357 - Databases

- 7,5 Higher education credits
- Runs twice each year, periods 2 and 3