Introduction

e Multiprocessors, specifically CMPs, are considered for many

Real-Time Scheduling: Some Results and Open embedded real-time systems (e.g., automotive)

Problems e The application of real-time systems are often modeled as a

collection of recurrent tasks (e.g., control applications)

Risat Mahmud Pathan
e Hard real-time systems must meet all the deadlines of its

. application tasks during runtime
Chalmers University of Technology, Sweden

e Problem: How can we guarantee that all the tasks deadlines
are met on m identical processors?

Task Model Scheduling Paradigms

@ We consider a set of recurrent real-time task set
e Global Scheduling: task can execute on any processor even
M={m,72,...7} when resumed after preemption

Each task r; has three parameters (C;, D;, T; .) .
° i P (G b 1) e Partitioned Scheduling: task can execute in exactly one

» Implicit-deadline if D; = T; processor to which it is assigned

» Constrained-deadline if D; < T; o)
e Task-Splitting: few tasks are allowed to migrate (global

scheduling flavor) and each of the remaining tasks executes
on a fixed processor to which they are assigned (partitioned
scheduling flavor).

> Total utilization U =Y u; =Y %

e Tasks are given fixed priorities

e Tasks are scheduled on m identical processors

The challenge for global FP scheduling

Two Problems

o Priority Assignment: How to assign the fixed priorities
_ o _ for a given task set?
Global Fixed-Priority Scheduling
e Schedulability Test: How to guarantee the
schedulability of a given task set?

Our work @ ECRTS 2011

Priority Assignment and Utilization Bound Test

Proposed new fixed-priority assignment policy, called
ISM-US, and derived the schedulability utilization bound

Priority Assignment and Iterative Test

Proposed an improved fixed-priority assignment policy and
iterative schedulability test

Utilization Bound Test

e Utilization bound test: Compare the total utilization of a task
set with the guarantee bound (i.e., one test).

o lterative test: Apply the test to one by one task (i.e., n tests)

Priority Assignment Policy TsM-US

Hybrid (Slack-Monotonic) Priority Assignment (HPA2)

A subset of the tasks are given slack-monotonic priority
and the other tasks are given the highest fixed-priority

Slack-Monotonic (SM)

Task 7; has higher SM priority than task 7 if and only if
(Ti— Ci < Tk — Ck)

Priority Assignment Policy TsM-US

If u; > uy, then task 7; is given the highest fixed-priority,
otherwise, task 7; is given slack-monotonic priority

Threshold Utilization

3m—-2—+v5m? —-8m+4
e = om—2

Theorem (Utilization Bound)

If U< m-min{0.5,us}, then all the deadlines of task set I'
are met using global FP scheduling

Priority Assignment Policy TsM-US

If u; > us, then task 7; is given the highest fixed-priority,
otherwise, task 7; is given slack-monotonic priority

Threshold Utilization

3m—2—+v5m —-8m+4
ts = om_2

State-of-the-art utilization bound
RM-US[1] M. Bertogna et. al., OPODIS 2005

If u > %, then task 7; is given the highest fixed-priority, otherwise,
task 7; is given rate-monotonic priority

Utilization Bound: ™!

State-of-the-art utilization bound

RM-US[1] M. Bertogna et. al., OPODIS 2005

If u; > %, then task 7; is given the highest fixed-priority, otherwise,
task 7; is given rate-monotonic priority

Utilization Bound: !

B. Andersson, OPODIS 2008

SM- US[3+]

If u; > 3+\/5, then task 7; is given the highest fixed-priority,
otherwise, task 7; is given slack-monotonic priority

Utilization Bound: 3+\[

Comparison with our bound
60 O/O T T T T T T T T T T T T T

50 % feeee, RM-US -~~~ |

40% ¢

30% r

20 %

Utilization bound / m

10% r

0%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of processors (m)

Figure: Utilization bounds of RM-US[], SM—Us[ﬁ] and proposed ISM-US

State-of-the-art utilization bound

RM-US[1] M. Bertogna et. al., OPODIS 2005

If u > %, then task 7; is given the highest fixed-priority, otherwise,
task 7; is given rate-monotonic priority

Utilization Bound: ™'

SM-US[2- B. Andersson, OPODIS 2008

3+\f]
then task 7; is given the highest fixed-priority,
otherwise, task 7; is given slack-monotonic priority

It u; > 3+ﬁ ’

Utilization Bound:

3+\f

State-of-the-art Utilization Bound
e If m < 6, then RM—US[1] is the best
@ If m > 6, then SM—US[] is the best

HPA policy and Global Scheduling

Separation of Concern

e During schedulability analysis, each highest priority task 7;'s
WCET is set to T; and one processor is (virtually) dedicated
to 7; without any concern.

e The problem now reduces to the schedulability of the other
(lower) priority tasks on (m — m’) processors (n7 is the
number of heavy tasks)

lterative Schedulability Test

Interference and Workload

When considering the schedulability of a lower
priority task 7, within the scheduling window, the
DA-LC test considers

e the interference of each higher priority task
7i € hp(K)

e based on the workload of each higher priority
task 7; in set hp(k)

e where each higher priority task 7; is considered
either a carry-in or a non carry-in task

lterative Schedulability test

e We consider constrained-deadline task systems
e We improved the priority assignment policy for an

iterative test, called the DA-1.C test, proposed by
Davis and Burns (RTSJ, 2011).

Carry-in and Non Carry-in Interference

- TI T\ T\ I TI
T — v h v T—\ v L v T -
e a7 e qr e PR Qe Ll

A
-
Y

IS, = carry-in interference of task 7; on 7,

Carry-in and Non Carry-in Interference

4_ TI T\ T\ TI
T Vv h v P\ A 4 v T -
e ar P PG LT T Ll
i i i I i I I i

'}

L

o
'

IS ik = carry- in interference of task 7; on 7

-I—T —Iv-I—T —l--I—T‘ —l-ﬂ—-T‘—I-
F S i
1 b S -
[dp+1 rp+2 dp+2 rp+N dlpw r‘p+N+1 P kil
I

-t L -

l’\’C = non carry-in interference of task 7; on 7«

The DA-1.C test

e The DA-1C test (Davis et al. RTSJ 2011) for task 74 is given
as follows:

/
Dy > Gy + m
@ The function I, is calculated as follows:

k=Y I+ > I

ichp(k) i€eMax(k,m—1)

The DA-1.C test

e The DA-1C test (Davis et al. RTSJ 2011) for task 74 is given
as follows:

Dy > Ck—‘r \‘lkJ

The DA-1.C test

e The DA-1C test (Davis et al. RTSJ 2011) for task 74 is given
as follows:

Dy > Ck + \‘lkJ
@ The function I, is calculated as follows:

k= > 0+ > T
ichp(k) ieMax(k,m—1)
e where

» Max(k, m— 1) is the set of (m — 1) higher priority tasks in hp(k)
that have the largest value of /%, and

The DA-1.C test The DA-1.C test

e The DA-1C test (Davis et al. RTSJ 2011) for task 74 is given ,
as follows: R. Davis and A. Burns (RTSJ, 2011) have showed that
Ik
Dz G+ {mJ e Audsley’s Optimal Priority Assignment(op2) algorithm is
, , applicable to the DA-Lc test
e The function I is calculated as follows: PP
Empirically shown that DA-LCc+0PA outperforms all other
=3 e+ i ° Empl
g ,gp%k) o Max%;m_ﬂ ok existing test

e where OPA+DA-LC is the state-of-the-art iterative schedulability
» Max(k,m— 1) is the set of (m — 1) higher priority tasks in hp(k) tests
that have the largest value of /%", and

- B = - ¥

Audsley’s opA for multiprocessors (RTSS, 2009) Our Observation @ ECRTS 2011

e OPA +DA-LC is proved optimal (RTSJ, 2011).

Algorithm opra (Taskset A, number of processors M, Test S)

1. for each priority level k, lowest first

2 for each priority unassigned task 7 € A

3 If 7 is schedulable using S on M processors at priority k
4, assign 7 to priority k

5 break (continue outer loop)

6 return “unschedulable”

7. return “schedulable”

opA+DA-LC (RTSJ, 2011)
Call opa (I', m, DA-LC)

Our Observation @ ECRTS 2011

e OPA +DA-LC is proved optimal (RTSJ, 2011).

e This combination is optimal only under the
assumption that it is applied to the entire

task set and to all processors

» i.e.,Call oPA(l', m,DA-1.C)

Interesting Observation
e Recall the DA-LcC test for task 7:
I
mzq+uJ

@ I, depends on (m — 1) carry-in terms

h= > B+ > T

iehp(k) ieMax(k,m—1)

Our Observation @ ECRTS 2011
e OPA +DA-LC is proved optimal (RTSJ, 2011).

e This combination is optimal only under the

assumption that it is applied to the entire
task set and to all processors

» i.e.,Call oPA(l', m,DA-1.C)

Scope for Improvement?

e Is it possible to obtain a more effective priority
assignment if

» OPA+DA-LC is applied to a subset of the entire
task set and on a lower number of processors

» while other tasks are assigned the highest
priorities based on HPA and predictability ?

Interesting Observation
o Recall the DA-LC test for task 7:

Ik
Di> Gy + M

@ I, depends on (m — 1) carry-in terms

k=Y M+ > I

iehp(k) ieMax(k,m—1)

e If we remove one task, say 75, from hp(k) and
e reduce the number of processors from mto (m— 1), and

@ apply the opA+DA-LC teston (I' — {7,}) and on (m — 1)
processors,

e then I, depends on (m — 2) carry-in tasks in (hp(k) — {m»})

vy

Example Example

e Consdierl = {r,...w}and m=3 e Consdier ={r,...7s}and m=3

e (C,D;,T) = e (C,,D;, T) =
{(23,33,33),(106,210,214),(58,216,217), (46,60,64)} {(28,33,33),(106,210,214), (58,216,217), (46,60,64)}

@ OPA (I, m = 3, DA-LC) returns “unschedulable” @ OPA (I, m = 3, DA-LC) returns “unschedulable”

@ /3 considers (m — 1) = 2 as carry-in task @ /3 considers (m— 1) = 2 as carry-in task

e The highest density (i.e.,C;/ D)) task 74 is given the highest
priority

@ OPA ({1, 12,13}, m =2, DA-LC) returns “schedulable”

@ /3 considers (m— 1) = 1 task as carry-in task

HPA+OPA +DA-LC

Algorithm Hybridopa (I', m)
1. form"=0to (m—1)

2. remove m’ highest desnity tasks from given task set I'
3 if oPA (I', m — ', DA-LC) returns “schedulable” then o .
4, return “schedulable” Task Splitting Algorithm

5. end for

6. return “unschedulable”

We call this test HP-DA-LC test)

Task Splitting

Background
» Global and partitioned method cannot guarantee
system utilization more than 50% for all task sets
(Lecture 7)

—Partitioned scheduling has task assignment step.

—Task assignment to processors is generally done
with a bin-packing algorithm.

Traditional Partitioned Scheduling

Processor A Processor B

We assume Task 2, Task 1 and Task 3 be the ordering of the tasks to assign to the
processors A and B.
Size of each task is proportional to the utilization of the task.

Task Splitting
Background (cont.)
A variation of partitioned scheduling using task-
splitting approach can achieve more than 50%

system utilization for all task sets.

» History: task-splitting for static-priority were first
proposed in July 2009 at CMU

Traditional Partitioned Scheduling

Processor A Processor B

Partition Fails!

Task 3 cannot be assigned to any processor
because size of Task 3 is too large

Task-Splitting Partitioned Scheduling

Processor A Processor B

Task-Splitting Partitioned Scheduling

Processor A Processor B .

Different subtasks of Task 3 can be assigned to different processors.
To construct the subtasks, we split Task 3.

Task-Splitting Partitioned Scheduling

Processor A Processor B

Different subtasks of Task 3 can be assigned to different processors.
To construct the subtasks, we split Task 3.

Task-Splitting Partitioned Scheduling

Processor A Processor B

Partition Success!

Challenges in Task-Splitting Some Results on Task Splitting
e ECRTS 2009, CMU: Utilization bound 65%
— Unsorted version: 60%

* How to design the task assignment — Number of split tasks is (m-1)
algorithm? — A task can be splitted in (m-1) parts
— How many splits of each task? « IPDPS 2009, CHALMERS (Our Work):
— How many tasks to split? — Utilization bound 55.2%

— How to ensure that subtasks of a split task do not

execute in parallel? — Number of split tasks is m/2

— A task can be splitted in at most 2 parts
* RTA 2010, UPPSALA

— (Sorting) Utilization bound 69.3%

— Number of split tasks is (m-1)

— A task can be splitted in (m-1)parts

* How to find the guarantee bound for given
task assignment algorithm?

Motivation for Dual-Priority

* RM is the optimal fixed-priority algorithm with
guarantee bound 69.3%
— Each task is assigned a fixed priority
Dual-Priority Scheduling
* EDF is the optimal dynamic priority algorithm with
guarantee bound 100%
— Each job/instance has a fixed-priority,

— Different instances of the same task may have different
priority

(uniprocessor)

Motivation for Dual-Priority

* |In EDF, the instances of a task can have n differnt
priorities
— Sometime priority level 1, sometime priority level 2, ...
Sometime priority level n

* In RM, all the instances of a task have exactly one
unique priority
— Problem: How can we introduce minimum dynamic-
priority behaviour such that higher utilization bound is
possible?

Dual Priority Scheduling

» Where is the problem ? | Jc [T |

M —
1 2 3 4 5 6 7 8 9 10 2

I ©: 2
T, 3 12

— The second instance of task T, can be delayed to allow

the first instance of task T, to complete before deadline

— How to do it?

* We can promote the priority of task T, over other tasks at the

beginning of time instant 11.

Dual-Priority Scheduling (EXAMPLE)

3 50%
25%
12 25%

N

T

w

T3

* Using RM scheduling on uniprocessor, the task
set is not schedulable
1 2 3 4 5 6 7 8 9 10 11 12

* The first instant of T; misses its deadline at
t=12

Dual Priority Scheduling

* New Priority and Promotion Point

Non-Promoted | Promoted When to promote?
Priority Priority

6 50% 2
t, 2 8 25% 3
T, 3 12 25% 4 1 11
Promotion point Promotion point

l |

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Dual Priority Scheduling

* Research Questions (a potential MS thesis work):

— What is the priority ordering before and after
promotion?
* Possibly RM priority: before (n+1, ... 2n) and after (1, ... n)

— How the promotion points have to be calculated for
each task?

* Heuristic: Start with promotion point equal to the deadline
and then decrease it if not successful.

— OPEN PROBELM: Does dual-priority scheduling have
100% utilization bound?
* We did a lot of simulation and get YES answer for all.

Mixed-Criticality System

* An active research area in Cyber-physical systems

* Many safety-critical systems are considering
integrating multiple functionalities on a single
platform (multicore)

— hosting functionalities with multiple criticality levels

* The design is often subjected to certification
requirements by certification authority (CA)
— e.g., FAA or EASA for avionics

Mixed-Criticality Systems

The Challenge

The certification authority (CA) is very pessimistic in
comparison to the system designer

The CA is only concerned about the correctness of
the safety-critical part

The system designer is concerned about the
correctness of the entire system

Challenge: Coming up with a scheduling strategy
that satisfies both the CA and the system designer

Current Research on MC

* Consider a particular aspect of the run-time
behavior of the system: the Worst-Case
Execution Time (WCET) of pieces of code

* The CA assumes high value for WCET

* The system designer assumes relatively lower
value for WCET

Traditional Fixed-Priority Schedule
Critical?| WCET | WCET(De | Deadli
(CA) signer) ne
11 NO - 1 2

J2 YES 15 1 3.5
13 YES 15 1 3.5

* If J1 is the highest priority task, then

i

0 1 2 3

one of J2 or J3 misses its deadline.

Example
Consider uniprocessor system
Fixed-priority scheduling
Three jobs J1,)2, and J3
All are released at time zero

N
J1 NO - 1 2

J2 YES 15 1 3.5
J3 YES 15 1 3.5

* Dual-Criticality Systems

Traditional Fixed-Priority Schedule
Critical?| WCET | WCET(De | Deadli
(CA) signer) ne
n NO - 1 2

J2 YES 15 1 3.5
3 YES 15 1 3.5

* If J1 is the medium priority task, then

0 1 2 3

J3 misses its deadline

Traditional Fixed-Priority Schedule Traditional Fixed-Priority Schedule
Critical? WOCET (CA) | WCET(Designer) | Deadline Critical? | WCET | WCET(De | Deadli
| e | cwar | WO | weRena) Deaive | lobe [Cricl? | WEET | WeETIDR | e
J1 NO - 1 2
J1 NO - 1 2

J2 YES 1.5 1 3.5
3 YES 15 1 " 1”2 YES 1.5 1 3.5
13 YES 1.5 1 3.5

* If J1is the lowest priority task, then

* Job J2 and J3 are schedulable if they are given the highest
two priority levels

‘ — But J1 misses its deadline even if J2 and J3 execute for only 1
| time unit

0 1 2 3

Job J1 misses its deadline even if both J2 and J3
executes for 1 time unit.

* Traditional Fixed-priority scheduling is not suitable to
satisfy both the system designer and the CA.

A New Scheduling Scheme A New Scheduling Scheme
| ks | cal? | WOET(A) | WeETloesigen) | Deadie | | ks | ol | WORT(A) | WeeTlosige) [Deadie |
J NO - 1 2 1 NO - 1 2
J2 YES 1.5 1 3.5 J2 YES 1.5 1 3.5
3 YES 1.5 1 3.5 3 YES 1.5 1 3.5

* If J2 does not complete by 1, then drop J2 and
execute J2 over [1,1.5) and then J3 over
[1.5,3).

* Execute J2 over [0,1). If J2 completes by 1,
then execute J1 and then J3

A New Scheduling Scheme Mixed-Criticality Sporadic Tasks

T e e >cheduling on Multiprocessor
J1 NO - 1 2

Each task is recurrent

2 YES 1.5 1 3.5 — Three parameters (WCET, Deadline, Period)
13 YES 1.5 1 3.5

* Priority Assignment: Assign the highest priority Priority assignment
to J2, medium priority to J1 and the lowest — How to assign fixed-priorities to the tasks?
priority to J3.

Schedulability analysis and test

* Dispatching: — How can we guarantee in offline that a MC task set is
— Execute J2 within [0,1). schedulable (satisfies both CA and the designer)?
— If J2 completes, then execute J1 within [1,2) and J3
within [2,3) or [2,3.5)) e
— If J2 does not complete, drop J1. Execute J2 for Multiple criticality levels
additional [1,1.5) and J2 within [1.5,3). — How to deal with multiple criticality levels?

Conclusion
There is a gap between 38% and 50% guarantee
bound for global fixed-priority scheduling.

The optimal priority assignment for global fixed-
priority scheduling is still unknown.

The maximum achievable guarantee bound for
task-splitting with fixed-priority is not known.

Dual-priority scheduling is very useful for industry,
e.g, in CAN, if the utilization bound is 100%.

Analysis for certifiable mixed-criticality systems on
multiprocessors needs to be developed.

