
EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #6
UpdatedApril 8, 2013

1

Parallel & Distributed

Real-Time Systems

Lecture #6

Risat Pathan

Department of Computer Science and Engineering

Chalmers University of Technology

Administrative issues

Group registration:

• Please register to a homework assignment group via
PingPong. There are 20 groups available.

• HW#1 will be available on April 19, on Friday.

Feasibility testing

What techniques for feasibility testing exist?

• Hyper-period analysis (for static and dynamic priorities)

– In a simulated schedule no task execution may miss its deadline

• Guarantee bound analysis (for static and dynamic priorities)

– The fraction of processor time that is used for executing the
task set must not exceed a given bound

• Response time analysis (for static priorities)

– The worst-case response time for each task must not exceed the
deadline of the task

• Processor demand analysis (for dynamic priorities)

– The accumulated computation demand for the task set under a
given time interval must not exceed the length of the interval

Feasibility testing

What techniques for feasibility testing exist?

• Hyper-period analysis (for static and dynamic priorities)

– In a simulated schedule no task execution may miss its deadline

• Guarantee bound analysis (for static and dynamic priorities)

– The fraction of processor time that is used for executing the
task set must not exceed a given bound

• Response time analysis (for static priorities)

– The worst-case response time for each task must not exceed the
deadline of the task

• Processor demand analysis (for dynamic priorities)

– The accumulated computation demand for the task set under a
given time interval must not exceed the length of the interval

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #6
UpdatedApril 8, 2013

2

task utilization =
Ci

Ti

Guarantee bound analysis

Basic principle:

– If the accumulated utilization U of all tasks in the system does
not exceed a guarantee bound, all timing constraints will be met.

– The guarantee bound UGB is expressed as a fraction of the
available processing capacity of the system.

(= 100% multiplied by the number of processors)

– The utilization Ui of a task is expressed as the fraction of
processing capacity used for executing the task.

Thus, guarantee bound analysis will have a polynomial time complexity

accumulated utilization =
Ci

Tii=1

n

∑

A good guarantee bound …
… enables prediction of required processing capacity, e.g. # and
speed of processors, of the hardware (when software is known)

… enables derivation of timing parameters, e.g. periods of tasks, in
the software (when hardware implementation is known)

Guarantee bound analysis

A good guarantee bound …

… enables prediction of how “strong” the hardware implementation

must be (when the software “load” is known)

… enables prediction of how high the software “load” is allowed to

be (when the “strength” of the hardware implementation is known)

=

Guarantee bound analysis

A good timing model …

… enables expressing the timing properties of the application in a

clear (syntactically unambiguous) way

… enables timing constraints to be reflected at all design levels:

from specification level (end-to-end constraints) to concrete

software implementation (task execution constraints)

A good guarantee bound …

… enables prediction of how “strong” the hardware implementation

must be (when the software “load” is known)

… enables prediction of how high the software “load” is allowed to

be (when the “strength” of the hardware implementation is known)

Honey, if you
don't know the
answer, just
SAY so!

Oh, I guess
I should
have known
that!

Dad? How do they know
how much weight a bridge
can handle?

They drive bigger and
bigger trucks over the
bridge until it
collapses!

Then they take the
weight of the last
truck and rebuild the
bridge

Guarantee bound analysis

Guarantee bound analysis for RM: (Liu & Layland, 1973)

• The guarantee bound for RM scheduling is

• A conservative lower limit on the guarantee bound can be
derived by letting n→ ∞

lim
n→∞

n 2
1/n

− 1() = ln2 ≈ 0.693

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #6
UpdatedApril 8, 2013

3

Guarantee bound analysis

Guarantee bound analysis for RM: (Liu & Layland, 1973)

• A sufficient condition for RM scheduling is

()12 /1

1

−≤=∑
=

n
n

i i

i n
T

C
U

� The test is only valid if all of the following conditions apply:
1. Single-processor system

2. Synchronous task sets

3. Independent tasks

4. Periodic or sporadic tasks

5. Tasks have deadlines equal to period ()
ii TD =

Guarantee bound analysis

Guarantee bound analysis for RM: (Liu & Layland, 1973)

• The proof of the condition uses the fact that the worst-
case response time for a task occurs at a critical instant
(where the task arrives at the same time as all higher-priority tasks)

• The feasibility test is derived using an analysis of this
special case

• The proof also shows that if the task set is schedulable for
the critical instant case, it is also schedulable for any other
case

• The proof is given in Krishna and Shin (Section 3.2.1)
Highly recommended reading!

Guarantee bound analysis

Guarantee bound analysis for EDF: (Liu & Layland, 1973)

• A sufficient and necessary condition for EDF scheduling is

1
1

≤=∑
=

n

i i

i

T

C
U

� The test is only valid if all of the following conditions apply:
1. Single-processor system

2. Synchronous task sets

3. Independent tasks

4. Periodic tasks

5. Tasks have deadlines equal to period ()ii TD =

Feasibility testing

What techniques for feasibility testing exist?

• Hyper-period analysis (for static and dynamic priorities)

– In a simulated schedule no task execution may miss its deadline

• Guarantee bound analysis (for static and dynamic priorities)

– The fraction of processor time that is used for executing the
task set must not exceed a given bound

• Response time analysis (for static priorities)

– The worst-case response time for each task must not exceed the
deadline of the task

• Processor demand analysis (for dynamic priorities)

– The accumulated computation demand for the task set under a
given time interval must not exceed the length of the interval

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #6
UpdatedApril 8, 2013

4

Response-time analysis

Response time:

• The response time for a task represents the worst-
case completion time of the task when execution
interference from other tasks are accounted for.

iR iτ

� The response time for a task consists of:

The task’s uninterrupted execution time (WCET)

Interference from higher-priority tasks

iC

i
τ

iI

iii
ICR +=

Response-time analysis

Interference:

• For static-priority scheduling, the interference term is

j

ihpj j

i
i C

T

R
I ∑

∈∀

=

)(

where is the set of tasks with higher priority than .iτ)(ihp

• The response time for a task is thus:
iτ

∑
∈∀

+=

)(ihpj

j

j

i
ii C

T

R
CR

Response-time analysis

Response-time calculation:

• The equation does not have a simple analytic solution.

• However, an iterative procedure can be used:

∑
∈∀

+

+=

)(

1

ihpj

j

j

n

i
i

n

i C
T

R
CR

• The iteration starts with a value that is guaranteed to be
less than or equal to the final value of (e.g.)iR 0

i iR C=

• The iteration completes at convergence () or if
the response time exceeds the deadline

i
D

1n n

i iR R+
=

Response-time analysis

Schedulability test: (Joseph & Pandya, 1986)

• An exact condition for static-priority scheduling is

ii DRi ≤∀ :

� The test is only valid if all of the following conditions apply:
1. Single-processor system

2. Synchronous task sets

3. Independent tasks

4. Periodic tasks

5. Tasks have deadlines not exceeding the period ()Di ≤ Ti

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #6
UpdatedApril 8, 2013

5

Response-time analysis

Time complexity:

� the longest period of a task is also the largest number in the
problem instance

Response-time analysis has pseudo-polynomial time complexity

� the procedure for calculating the response-time for all tasks
is therefore of time complexity O(max Ti{ })

Proof:
� calculating the response-time for task requires no more

than iterations Di

i
τ

� since the number of iterations needed to calculate
the response-time for task is bounded above by Ti

Di ≤ Ti

iτ

Response-time analysis

Accounting for blocking:

• Blocking caused by critical regions
– Blocking factor represents the length of critical region(s) that

are executed by processes with lower priority than

• Blocking caused by non-preemptive scheduling
– Blocking factor represents largest WCET (not counting)

i
B

i
τ

i
B i

τ

()

i
i i j

jj hp

i

i

R
R C CB

T∀ ∈

= + +

∑

Observation: the feasibility test is now only sufficient since the
worst-case blocking will not always occur at run-time.

Response-time analysis

Accounting for blocking: (using PCP or ICPP)

� This occurs if the lower-priority task is within a critical
region when arrives, and the critical region’s ceiling
priority is higher than or equal to the priority of .iτ

iτ

� When using priority ceiling a task can only be blocked
once by a task with lower priority than .

iτ
iτ

� Blocking now means that the start time of is delayed
(= the blocking factor)

iB
iτ

� As soon as has started its execution, it cannot be
blocked by a lower-priority task.

iτ

Response-time analysis

Accounting for blocking: (using PCP or ICPP)

Determining the blocking factor for
iτ

1. Determine the ceiling priorities for all critical regions.

3. Consider the times that these tasks lock the actual critical
regions. The longest of those times constitutes the blocking
factor .

iB

2. Identify the tasks that have a priority lower than and
that calls critical regions with a ceiling priority equal to or higher
than the priority of .iτ

i
τ

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #6
UpdatedApril 8, 2013

6

(this page intentionally left blank) Processor-demand analysis

Processor demand:

• The processor demand for a task in a given time
interval is the amount of processor time that the
task needs in the interval in order to meet the deadlines
that fall within the interval.

i
τ

[]0, L

� Let represent the number of instances of that must
complete execution before .

L

iN i
τ

L

� The total processor demand up to isL

1

(0,)

n

L
P i i

i

C L N C
=

=∑

Processor-demand analysis

Number of relevant task arrivals:

• We can calculate by counting how many times task
has arrived during the interval .

iτ
[]0,

i
L D−

L

iN

� We can ignore instance of the task that has arrived during
the interval since for these instances.

i
D L>[],iL D L−

1
2LN =

2
3

L
N =

t0 L

1
τ

2
τ

Processor-demand analysis

Processor-demand analysis:

• We can express as

� The total processor demand is thus

L

iN

1
iL

i

i

L D
N

T

−
= +

1

(0,) 1

n

i
P i

ii

L D
C L C

T=

−
= +
∑

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #6
UpdatedApril 8, 2013

7

Processor-demand analysis

Schedulability test: (Baruah et al., 1990)

• A sufficient and necessary condition for EDF scheduling is

: (0,)PL K C L L∀ ∈ ≤

� The test is only valid if all of the following conditions apply:
1. Single-processor system

2. Synchronous task sets

3. Independent tasks

4. Periodic tasks

5. Tasks have deadlines not exceeding the period ()Di ≤ Ti

Processor-demand analysis

Schedulability test: (Baruah et al., 1990)

• The set of control points K is

K = Di

k Di

k
= kTi + Di , Di

k
≤ L

max
, 1 ≤ i ≤ n, k ≥ 0{ }

Lmax = max D1, ... , Dn,
(Ti − Di)U ii=1

n

∑
1−U

L
max

≤ max max Di{ } ,
U

1−U
max Ti − Di{ }

≤ max max Ti{ } ,
U

1−U
max Ti{ }

Observation:

Processor-demand analysis

Time complexity:

Processor-demand analysis has pseudo-polynomial time

complexity if total task utilization is less than 100%

Proof:
� the number of control points needed to check the processor

demand is bounded above by

� since is a constant the procedure for calculating the
processor demand is therefore of time complexity O(max Ti{ })

U / (1−U)

QL

max
= max max Ti{ } ,

U

1−U
max Ti{ }

= max 1,
U

1−U

�max Ti{ }

� the longest period of a task is also the largest number in the
problem instance

Processor-demand analysis

Accounting for blocking: (using Stack Resource Policy)

Tasks are assigned static preemption levels:

� The preemption level of task is denoted

� Task is not allowed to preempt another task unless

� If has higher priority than and arrives later, then must
have a higher preemption level than .

τ i
π i

τ i τ j
π i > π j

τ i τ j τ i
τ j

Note:

- The preemption levels are static values, even though the tasks
priorities may be dynamic.

- For EDF scheduling, suitable levels can be derived if tasks with
shorter relative deadlines get higher preemption levels, that is:

π i > π j ⇔ Di < D j

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #6
UpdatedApril 8, 2013

8

Processor-demand analysis

Accounting for blocking: (using Stack Resource Policy)

Resources are assigned dynamic resource ceilings:

� Each shared resource is assigned a ceiling that is always equal
to the maximum preemption level among all tasks that may be
blocked when requesting the resource.

� The protocol keeps a system-wide ceiling that is equal to the
maximum of the current ceilings of all resources.

� A task with the earliest deadline is allowed to preempt only if its
preemption level is higher than the system-wide ceiling.

Note:
� The original priority of the task is not changed at run-time.

� The resource ceiling is a dynamic value calculated at run-time
as a function of current resource availability.

Processor-demand analysis

Accounting for blocking: (using Stack Resource Policy)

� Blocking factor represents the length of critical / non-
preemptive regions that are executed by tasks with
lower preemption levels than

� Tasks are indexed in the order of increasing preemption
levels, that is:

CP
i =

L − Dk

Tk

 + 1

Ck

k=1

i

∑ +
L − Di

Ti

 + 1

Bi

∀L ∈ K ,∀i ∈ 1,n : CP

i (0, L) ≤ L

i
τ

π i > π j ⇔ i < j

iB

Processor-demand analysis

Accounting for blocking: (using Stack Resource Policy)

Determining the blocking factor for

τ

i

1. Determine the worst-case resource ceiling for each critical region,
that is, assume the run-time situation where the corresponding
resource is unavailable.

2. Identify the tasks that have a preemption level lower than and
that calls critical regions with a worst-case resource ceiling equal
to or higher than the preemption level of .

τ
i

τ

i

i
B

3. Consider the times that these tasks lock the actual critical
regions. The longest of those times constitutes the blocking
factor .

End of lecture #6

