EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #4

Updated April 4, 2013

ﬁ Parallel & Distributed
< Real-Time Systems

Lecture #4

Risat Pathan

Department of Computer Science and Engineering
Chalmers University of Technology

Student Representatives

VIKTOR BOTEV botev@student.chalmers.se
MICHAEL JASINSKI jasinski@student.chalmers.se
VIKTOR DAHL dviktor@student.chalmers.se

Contact information will be available in homepage

Course Evaluation Procedure

® Each course at Chalmersis evaluated with an intro
meeting, a recommended half-way meeting and a final
meeting.

® Questionnaires are sent out to all courses by the end of the
exam week. And, can be answered until the end of Sw2 in
the following Sp.

® When the questionnaires have closed, the final meeting is
held.

® The final meeting is led by a programme representative.

What's the procedure?

(in brief)

Meeting 1
Intro meeting

@ MHeeltifwng : ' Meeting 3
alfway = =
meeting [Questlonna;re ” Final meeting J

[1]2]3]4]5]6]7fead [172 3 4[56]7

Comments on W
course website

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #4

Updated April 4, 2013

Scheduling

Scheduling is used in many disciplines:
(a.k.a. "operations research”)

® Production pipelines (“Ford’s automotive assembly line”)

Actors: workers + car parts

Goal: generate schedules that maximizes system throughput
(cars per time unit)

Technique: job- and flow-shop scheduling

® Real-time systems

Actors: processors, data structures, I/0 hardware + tasks
Goal: generate schedules that meet timing constraints
(deadlines, periods, jitter)

Technique: priority-based task scheduling

Scheduling

Scheduling is used in many disciplines:
(a.k.a. "operations research”)

® (Classroom scheduling

Actors: classrooms, teachers, projectors + courses
Goal: generate periodic schedules within 7-week blocks
Technique: branch-and-bound algorithms

® Airline crew scheduling

Actors: aircraft, staff + routes

Goal: generate periodic schedules that minimizes the number of
aircraft and staff used and fulfill union regulations for staff
Technique: advanced branch-and-bound algorithms

Scheduling

® A scheduling algorithm generates a schedule for a given
set of tasks and a certain type of run-time system.

® The scheduling algorithm is implemented by a scheduler
that decides in which order the tasks should be executed.

® (QObserve that the scheduler selects which task should be
executed next, while the dispatcher starts the execution of
the selected task.

task arrival dispatching task termination
scheduling

preemption

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #4
Updated April 4, 2013

Scheduling Scheduling

A sched A scheduling al

to schedL

A scheduling al

04 04
Cm{ﬁhm&gs \ @UNIVERSITYOF GOTHENBURG Cm{ﬁhm&gs \ @UNIVERSITYOF GOTHENBURG
Scheduling constraints Scheduling constraints
Examples of scheduling constraints: Examples of scheduling constraints:
® No processor sharing: ® Non-preemptive scheduling:
— A processor can only execute one task at a time — Once started, a task cannot be preempted by another task
— This is a realistic assumption for any processor type being — This assumption is not so common in priority-based scheduling

used in practice

L . o ® Greedy scheduling:
— Note: in case of multi-core processors, each core is viewed .
as a separate processor — Once started, a task cannot be preempted by a lower-priority task

. . — This assumption applies for all run-time systems used in practice
® No dynamic task parallelism: p pp y p

— A task can only execute on one processor at a time ® No task migration: .
— This is a realistic assumption for any programming model — Atask can only execute on one given processor, or cannot
being used in practice change processor once it has started its execution

— This is a realistic assumption for distributed systems, and is also
enforced for some multi-core processor designs (e.g. AUTOSAR)

Scheduling constraints

Non-preemptive scheduling:

® Advantages:
— Mutual exclusion can be automatically guaranteed

— Results from WCET analysis correspond well with real
WCET behavior

® Disadvantages:

— Negative effect on schedulability
e Scheduling decision takes effect only after a task has
completed its execution
* Once a task starts executing, all other tasks on the same
processor will be blocked until execution is complete

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #4
Updated April 4, 2013

Scheduling constraints

Preemptive scheduling:

® Advantages:
— Schedulability is not negatively affected

e Scheduling decisions can take effect as soon as the system state
changes (even in the middle of task execution)

e The capacities of task priorities can be used in full

® Disadvantages:
— Mutual exclusion has to be guaranteed by e.g. semaphores (or
similar constructs)
— WCET analysis is more complicated since cache and pipeline
contents will be affected by a task switch
— Program security may be compromised (through so-called
covert channels) if full preemption is allowed

Scheduling constraints

Greedy scheduling:

® Example: "traditional” static-priority scheduling (RM, DM)
— Once a task starts executing, lower-priority tasks cannot grab
the processor until execution is complete
® Advantages:
— Scheduler relatively simple to implement
— Supported by all run-time systems used in practice

® Disadvantages:

— Schedulability is negatively affected:
e Lower-priority tasks can starve and hence miss their deadlines

Scheduling constraints

Fair scheduling:

® Example: p-fair scheduling

— Although a task has started executing, lower-priority tasks
receive a guaranteed time quantum per time unit for execution

— All tasks hence make some kind of progress per time unit

® Advantages:
— Schedulability can be maximized on a multiprocessor system
(assuming that task switch cost is negligible)
® Disadvantages:
— Not supported by run-time systems used in practice
— Poor schedulability when task switch cost is non-negligible
e Fairness implies significantly more task switches than greediness

Scheduling algorithms

How much an oracle is the scheduling algorithm?

® Myopic scheduler:
— Scheduling algorithm only knows about currently ready tasks.

— Scheduling decisions are only taken whenever a new task
instance arrives or a running task instance terminates.

® Clairvoyant scheduler:

— Scheduling algorithm “knows the future”; that is, it knows in
advance the arrival times of the tasks.

— On-line clairvoyant scheduling is difficult to realize in practice.

"Predictions are always hard to make. In particular about the future.”
(Yogi Berra)

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #4
Updated April 4, 2013

Scheduling algorithms

When are schedules generated?

® Static scheduling:
— Schedule generated "off-line” before the tasks becomes ready,
sometimes even before the system is in mission.
— Schedule consists of a "time table”, containing explicit start and
completion times for each task instance, that controls the order
of execution at run-time.

® Dynamic scheduling:
— Schedule generated "on-line” as a side effect of tasks being
executed, that is, when the system is in mission.
— Ready tasks are sorted in a queue and receive access to the
processor and shared resources at run-time using conflict-
resolving mechanisms.

Static scheduling

Off-line schedule generation:

® Simulate dynamic scheduling
— Record a run-time behavior
® Apply a search heuristic (e.g., a branch-and-bound algorithm)

— Find a feasible schedule (if one exists) by considering all
possible execution scenarios

2 EZFZFFA 7
2 o, =, |

15*i+0 15*i+5 15*i+10 15*i+15 t

T :
(2 EEREREREE :

Dynamic scheduling

On-line schedule generation:

® Mechanisms for resolving conflicts
— Priorities possibly combined with time quanta

— Feasibility of schedule must be checked off-line by making
predictions on how the conflicts are resolved at run-time

A

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #4
Updated April 4, 2013

Cm{ﬁtmﬁﬁs \ @ UNIVERSITY OF GOTHENBURG Cm{ﬁtmﬁﬁs \ @ UNIVERSITY OF GOTHENBURG
Dynamic scheduling Dynamic scheduling
Rate-monotonic scheduling (RM): Deadline-monotonic scheduling (DM):
® Uses static priorities ® Uses static priorities
— Priority is determined by task frequency (rate) — Priority is determined by task deadline
— Tasks with higher rates (i.e., shorter periods) are assigned — Tasks with shorter (relative) deadlines are assigned higher
higher priorities priorities
® Theoretically well-established (for single-processor systems) — Note: RM is a special case of DM, with D, = T;
— Sufficient schedulability test can be performed in linear time ® Theoretically well-established (for single-processor systems)
(Eunder cc;rtaml S|rlr.1pln‘y|ng. assu’r\lnlftlons)l I — Exact schedulability test is an NP-complete problem
B xagt s¢ .edu ability test is an .—compeFe problem) — DM is optimal among all scheduling algorithms that uses static
— RM s optimal among all scheduling algorithms that uses static priorities under the assumption that D, < T; for all tasks
priorities under the assumption that D, = T; for all tasks

Cm{ﬁhmﬁgs \ @UNIVERSJTVOFGOTHENBURG Cm{ﬁhmﬁgs \ @UNIVERSJTVOFGOTHENBURG
Dynamic scheduling Dynamic scheduling
Earliest-deadline-first scheduling (EDF): Example: RM versus EDF 7:(G =21, =5)
. 7,:(C,=4,T,=7)
® Uses dynamic priorities Missed deadline
— Priority is determined by how critical the process is at a given
time Instant b b/ m b b wm
— The task whose absolute deadline is closest in time receives RM o 5 / o s % 5 t
the highest priority PR i ! |

® Theoretically well-established (for single-processor systems)
— Exact schedulability test can be performed in linear time
(under certain simplifying assumptions)
— EDF is optimal among all scheduling algorithms that uses gl
dynamic priorities under the assumption that D, = T; for all tasks EDF 0 5 10

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #4
Updated April 4, 2013

~ When tasks are no longer in
software/hardware obj

H

Handling shared resources

Priority inversion phenomenon:

priority (H) > priority (M) > priority (L)

I normal execution H and L share mutex resource R

FZZ7 critical region Blocking time for H not bounded

/by execution of critical region
H blocked

M h/ |

7/ s -

-

Handling shared resources

Resolving resource conflicts:
(while also avoiding priority/deadline inversion)

® Off-line resource scheduling:

— Intelligent algorithms that are configured to generate schedules
with no need for conflict resolution at run-time.

® On-line resource access protocols:
— Blocking protocols using dynamic adjustments of task priorities.

— Non-blocking protocols using retry loops.

Handling shared resources

Priority Inheritance Protocol:

® Basic idea: When a task 7, blocks one or more higher-
priority tasks, it temporarily assumes (inherits) the highest
priority of the blocked tasks.

Advantage:
— Prevents medium-priority tasks from preempting 7; and
prolonging the blocking duration experienced by
higher-priority tasks.

Disadvantage:

— May deadlock: priority inheritance can cause deadlock

— Chained blocking: the highest-priority task may be blocked
once by every other task executing on the same processor.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #4
Updated April 4, 2013

Handling shared resources

Priority Ceiling Protocol:

® Basic idea: Each resource is assigned a priority ceiling
equal to the priority of the highest-priority task that can lock
it. Then, a task 7, is allowed to enter a critical region only if
its priority is higher than all priority ceilings of the resources
currently locked by tasks other than z.
When the task 7, blocks one or more higher-priority tasks, it
temporarily inherits the highest priority of the blocked tasks.

Advantage:
— No deadlock: priority ceilings prevent deadlocks

— No chained blocking: a task can be blocked at most the
duration of one critical region.

Handling shared resources

Priority Ceil |ng Protocol: priority (H) > priority (M) > priority (L)
H sequentially accesses resources R, and R,
M accesses resource R,
- normal execution L accesses resource R, and nests R,
H blocked because its priority

7 " ; -
m critical region M blocks on £ is not higher than ceiling for R,
L inherits the priority of M__~ L inherits the priority of H

H / [
R, R, t

Ry t

ceiling blocking

s/ ;.
R,

Handling shared resources

Distributed PCP:

® All critical regions associated with the same global resource
are bound to a specified synchronization processor.

® Atask "migrates” to the synchronization processor to
execute the critical region (using remote-procedure calls)
— Advantage: deadlock-free algorithm
— Disadvantage: large overhead for message-passing protocol

® All critical regions associated with the same global resource
are executed at a priority equal to the semaphore’s priority
ceiling
— short blocking times

Handling shared resources

Lock-Free and Wait-Free Object Sharing:

If several tasks attempt to
and if a subset of t

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #4
Updated April 4, 2013

Handling shared resources

Lock-Free Object Sharing:

® Basic idea: The lock-free object sharing scheme is implemented
using retry loops”. Object accesses are implemented using test-
and-set or compare-and-swap instructions typically found in
modern RISC processors.

¢ Advantage:
— Resource accesses are non-blocking
— Deadlock-free
— Avoids priority inversion
— Requires no kernel-level support

¢ Disadvantage:
— Potentially unbounded retry loops

Handling shared resources

Wait-Free Object Sharing:

® Basic idea: The wait-free object sharing scheme is implemented
using a "helping” strategy where one task "helps” one or more
other tasks to complete an operation.

Before beginning an operation, a task must announce its
intentions in an "announce variable”.

While attempting to perform its own operations, a task must also
help any previously-announced operation (on its processor) to
complete execution.

¢ Advantage:
— Non-blocking, deadlock-free, and priority-inversion-free

— Requires no kernel-level support
— Precludes waiting dependencies among tasks

Handling shared resources

Non-existence of optimal on-line shared-resource
scheduler:

When there are mutual

it is imposs

Complexity of shared-resource feasibility test:

‘ The problem of decidi
which use se

End of lecture #4

