

Lecture #3

Professor Jan Jonsson

Department of Computer Science and Engineering Chalmers University of Technology

UNIVERSITY OF GOTHENBURG Intractability

Reasonable encoding scheme:

Conciseness:

CHALMERS

- The encoding of an instance I should be concise and not "padded" with unnecessary information or symbols
- Numbers occurring in *I* should be represented in binary (or decimal, or octal, or in any fixed base other than 1)
- Decodability:
 - It should be possible to specify a polynomial-time algorithm that can extract a description of any component of I.

CHALMERS UNIVERSITY OF GOTHENBURG

Intractability

Polynomial-time algorithm:

• An algorithm whose time-complexity function is O(p(Len))for some polynomial function p, where Len is the input length.

Exponential-time algorithm:

• Any algorithm whose time-complexity function cannot be so bounded.

A problem is said to be intractable if it is so hard that no polynomial-time algorithm can possibly solve it.

CHALMERS | MUNIVERSITY OF GOTHENBURG

Intractability

Input length:

• The number of information symbols needed for describing a problem instance using a reasonable encoding scheme Example: Len = $n + \lceil \log_i B \rceil + \max \{ \lceil \log_i d(c_i, c_i) \rceil : c_i, c_i \in C \}$

Largest number:

• The magnitude of the largest number in a problem instance Example: $Max = \max \{d(c_i, c_j) : c_i, c_j \in C\}$

Time-complexity function:

• Expresses an algorithm's time requirements giving, for each possible input length, the largest amount of time needed by the algorithm to solve a problem instance of that size

CHALMERS | MUNIVERSITY OF GOTHENBURG

Class P

Deterministic algorithm: (Deterministic Turing Machine)

- Finite-state control:
 - The algorithm can pursue only one computation at a time
 - Given a problem instance I, some structure (= solution) S is derived by the algorithm
 - The correctness of S is inherent in the algorithm

The class P is the class of all decision problems Π that. under reasonable encoding schemes, can be solved by polynomial-time deterministic algorithms.

M UNIVERSITY OF GOTHENBURG

an overall deadline.

CHALMERS

