```
CHALMERS
(4) UNIERSTTY OF GOTHENBURG
```


Parallel \& Distributed

``` Real-Time Systems
```


Lecture \#3

Professor Jan Jonsson

Department of Computer Science and Engineering Chalmers University of Technology

CHALMERS | (4) UNIVERSTTY OF GOTHENBURG

Computers and Intractability

A Guide to the Theory of NP-Completeness

The "Bible" of complexity theory
M. R. Garey and D. S. Johnson
W. H. Freeman and Company, 1979

CHALMERS | (4) UNIVERSTTY OF GOTHENBURG
 The "Bandersnatch" problem

nitial attempt:

Pull down your reference books and plunge into the task with great enthusiasm.

Some weeks later ...
Your office is filled with crumpled-up scratch paper, and your enthusiasm has lessened considerable because..
. the solution seems to be to examine all possible designs!
New problem:
How do you convey the bad information to your boss?

CHALMERS | © UNIVERSTTY OF GOTHENBURG

The "Bandersnatch" problem

Approach \#2: Prove that the problem is inherently intractable

Drawback: Proving inherent intractability can be as hard as finding efficient algorithms. Even the best theoreticians have failed!

CHALMERS | (4) UNIVERSTTY OF GOTHENBURG
 NP-complete problems

NP-complete problems:

Problems that are "just as hard" as a large number of other problems that are widely recognized as being difficult by algorithmic experts.

Advantage: This would inform your boss that it is no good to fire you and hire another expert on algorithms.

CHALMERS
 (4) university of gothensurg

NP-complete problems

Problem:

- A general question to be answered

Example: The "traveling salesman optimization problem"
Parameters:

- Free problem variables, whose values are left unspecified Example: A set of "cities" $C=\left\{c_{1}, \ldots, c_{n}\right\}$ and a "distance" $d\left(c_{i}, c_{j}\right)$ between each pair of cities c, and c_{1}

Instance:

- An instance of a problem is obtained by specifying particular values for all the problem parameters Example: $C=\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}, d\left(c_{1}, c_{2}\right)=10, d\left(c_{1}, c_{3}\right)=5, d\left(c_{1}, c_{4}\right)=9$,

$$
d\left(c_{2}, c_{3}\right)=6, d\left(c_{2}, c_{4}\right)=9, d\left(c_{3}, c_{4}\right)=3
$$

CHALMERS | (4) UNIVERSTTY OF GOTHENBURG

NP-complete problems

The Traveling Salesman Optimization Problem:

Minimum "tour" length $=27$
Minimize the length of the "tour" that visits each city in sequence, and then returns to the first city.

CHALMERS
 (4) UNVERSITY OF Gothensurg

NP-complete problems

The Traveling Salesman Decision Problem:

s there a "tour" of all the cities in C having a total length of no more than B ?
(4) university of gothensurg

Intractability

Reasonable encoding scheme:

- Conciseness:
- The encoding of an instance I should be concise and not "padded" with unnecessary information or symbols
- Numbers occurring in I should be represented in binary (or decimal, or octal, or in any fixed base other than 1)
- Decodability:
- It should be possible to specify a polynomial-time algorithm that can extract a description of any component of I.

CHALMERS

d) universtry of Gothenburg

Intractability

Polynomial-time algorithm:

- An algorithm whose time-complexity function is $O(p($ Len $))$ for some polynomial function p, where Len is the input length.
Exponential-time algorithm:
- Any algorithm whose time-complexity function cannot be so bounded.

A problem is said to be intractable if it is so hard that no polynomial-time algorithm can possibly solve it.

CHALMERS
 (4) University of gothenburg

Intractability

Input length:

- The number of information symbols needed for describing a problem instance using a reasonable encoding scheme Example: Len $=n+\left\lceil\log _{2} B\right\rceil+\max \left\{\left\lceil\log _{2} d\left(c_{i}, c_{j}\right)\right\rceil: c_{i}, c_{j} \in C\right\}$
Largest number:
- The magnitude of the largest number in a problem instance Example: $\operatorname{Max}=\max \left\{d\left(c_{i}, c_{j}\right): c_{i}, c_{j} \in C\right\}$
Time-complexity function:
- Expresses an algorithm's time requirements giving, for each possible input length, the largest amount of time needed by the algorithm to solve a problem instance of that size

CHALMERS
 (4) University of gothenburg

Class P

Deterministic algorithm: (Deterministic Turing Machine)

- Finite-state control:
- The algorithm can pursue only one computation at a time
- Given a problem instance I, some structure (= solution) S is derived by the algorithm
- The correctness of S is inherent in the algorithm

The class P is the class of all decision problems Π that, under reasonable encoding schemes, can be solved by polynomial-time deterministic algorithms.

CHALMERS
 (4) UNIVERSITY OF Gothenbura

Class NP

Non-deterministic algorithm: (Non-Deterministic Turing Machine)

1. Guessing stage:

- Given a problem instance I, some structure S is "guessed"
- The algorithm can pursue an unbounded number of independent computational sequences in parallel

2. Checking stage:

- The correctness of S is verified in a normal deterministic manner

The class NP is the class of all decision problems Π that, under reasonable encoding schemes, can be solved by polynomial-time non-deterministic algorithms

CHALMERS
 University of gothenburg
 NP-complete problems

Reducibility:

- A problem Π ' is reducible to problem Π if, for any instance of Π ', an instance of Π can be constructed in polynomial time such that solving the instance of Π will solve the instance of Π ' as well.

When Π^{\prime} is reducible to Π, we write $\Pi^{\prime} \propto \Pi$

A decision problem Π is said to be NP-complete if $\Pi \in$ NP and, for all other decision problems $\Pi \prime \in N P$,
Π ' polynomially reduces to Π

CHALMERS
(4) universtit of gothenburg

Relationship between P and NP

Observations

1. $P \subseteq N P$

- Proof: use a polynomial-time deterministic algorithm as the checking stage and ignore the guess ...

2. $P \neq N P$

- This is a wide-spread belief, but
- ... no proof of this conjecture exists!

The question of whether or not the NP-complete problems are intractable is now considered to be one of the foremost open questions of contemporary mathematics and computer science!

CHALMERS
 (4) University of gothenburg

NP-hard problems

Turing reducibility:

- A problem Π ' is Turing reducible to problem Π if there exists an algorithm A that solves Π ' by using a hypothetical subroutine S for solving Π such that, if S were a polynomial time algorithm for Π, then A would be a polynomial time algorithm for Π^{\prime} as well.

When Π ' is Turing reducible to Π, we write $\Pi^{\prime} \propto_{T} \Pi$

A search problem Π is said to be NP-hard if there exists some decision problem $\Pi^{\prime} \in N P$ that Turing-reduces to Π.

CHALMERS
(9) University of gothenburg

NP-hard problems

Observations:

- All NP-complete problems are NP-hard
- Given an NP-complete decision problem, the corresponding optimization problem is NP-hard

To see this, imagine that the optimization problem (that is, finding the optimal cost) could be solved in polynomial time
The corresponding decision problem (that is, determining whether there exists a solution with a cost no more than B) could then be solved by simply comparing the found optimal cost to the bound B. This comparison is a constant-time operation.

CHALMERS

(4) University of gothenburg

Strong NP-completeness

Pseudo-polynomial-time algorithm
An algorithm whose time-complexity function is $O(p($ Len, Max $)$) for some polynomial function p, where Len is the input length and Max is the largest number

Number problem:
A decision problem for which there exists no polynomia function p such that Max $\leq p($ Len $)$ for all instances of the problem.
Examples:

- PARTITION, KNAPSACK, TRAVELING SALESMAN
- MULTIPROCESSOR SCHEDULING

CHALMERS | ©NIVERITY OFGOTHENBURG

Circumventing NP-completeness

Tricks for circumventing the intractability:

1. Limiting the largest number in the problem instance
2. Redefining the problem (e.g. edge vs vertex cover)
3. Exploiting problem structure (e.g. limits on vertex degrees, "intree" vs "outtree" task graphs)
4. Fixing problem parameters (e.g. fixed \# of processors in multiprocessor scheduling)

CHALMERS | (4) UNIVERSTTY OF GOTHENBURG

History of NP-completeness

D. Knuth: (1974)
"A Terminological Proposal"
Initiated a researcher's poll in search of a better term for "at least as hard as the polynomial complete problems".

One suggestion by S. Lin was PET problems:

- "Probably Exponential Time" (if $\mathrm{P}=\mathrm{NP}$ remain open question)
- "Provably Exponential Time" (if $\mathbf{P} \neq \mathbf{N P}$)
- "Previously Exponential Time" (if $\mathrm{P}=\mathrm{NP}$)

CHALMERS | (4) UNIVERSITY OF GOTHENBURG

NP-complete scheduling problems

Multiprocessor scheduling:
Independent tasks with an overall deadline.
Transformation from PARTITION (Garey and Johnson, 1979)
NP-complete in the strong sense for arbitrary number of processors NP-complete in the normal sense for two processors.
Solvable in pseudo-polynomial time for any fixed number of
processors.
Solvable in polynomial time if execution times are identical.

CHALMERS (4) unIVERSTYY of Gothenburg

NP-complete scheduling problems

Multiprocessor scheduling with individual deadlines:
Precedence-constrained tasks with identical execution times and individual deadlines
Transformation from VERTEX COVER (Brucker, Garey and Johnson, 1977)
NP-complete in the normal sense for arbitrary number of processors. Solvable in polynomial time for two processors or "in-tree" precedence constraints.

CHALMERS| (4) UNVERSTTY OF Gothenvurg
 NP-complete scheduling problems

Preemptive uniprocessor scheduling of periodic tasks:
Independent tasks with individual offsets and periods, and preemptive dispatching.
Transformation from CLIQUE (Leung and Merrill, 1980)
NP -complete in the normal sense.

CHALMERS | © (4) UNVERSTTY OF Gothensurg

NP-complete scheduling problems

Non-preemptive uniprocessor scheduling of periodic tasks:
Independent tasks with individual offsets and periods, and non-preemptive dispatching
Transformation from 3-PARTITION (Jeffay, Stanat and Martel, 1991)
NP-complete in the strong sense

Additional reading:
Read the paper by Jeffay, Stanat and Martel (RTSS'91)
Study particularly how the transformation from 3-PARTITION is tudy particularly how the transformation from 3-PARTITION
used for proving strong NP-completeness (Theorem 5.2)

