
EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #2
UpdatedMarch 18, 2013

1

Parallel & Distributed

Real-Time Systems

Lecture #2

Risat Pathan

Department of Computer Science and Engineering

Chalmers University of Technology

Designing a real-time system

Verification

Implementation

Specification

How should it be done?

What should be done &
When should it be done?

Can it be done with the
given implementation?

New design!

Verification

Since timeliness is such an important characteristic of a
real-time system: how do we verify that the timing
constraints are met for a given system implementation?

… so we don’t miss that
hard deadline … … so we don’t miss too

many soft deadlines … … while we at the same time
avoid analyzing all possible
software execution
scenarios

Verification

What is needed for formal verification?

• A good timing model

Enables expressing the timing properties of the application in a

syntactically unambiguous way

Enables timing constraints to be reflected at all design levels: from

specification level (end-to-end constraints) to implementation level

• A good schedulability analysis

Enables prediction of required processing capacity, e.g. # and

speed of processors, of the hardware (when software is known)

Enables prediction of required resource usage from the software

(when hardware implementation is known)

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #2
UpdatedMarch 18, 2013

2

Verification

What sources of uncertainty exist in formal verification?

• Non-determinism in tasks’ WCET (undisturbed execution)

– Input data and internal state controls execution paths

– Memory access patterns control delays in processor
architecture (pipelines and cache memories)

• Non-determinism in tasks’ execution interference
(pseudo-parallel execution)
– Run-time execution model controls interference pattern

• Conflicts in tasks’ demands for shared resources

– (Pseudo-)parallel task execution may give rise to uncontrolled
blocking of shared hardware and software resources

Verification

How do we simplify formal verification?

• Concurrent and reactive programming paradigm

– Suitable schedulable unit of concurrency (task, thread, …)

– Language constructs for expressing application constraints
for schedulable unit (priorities, delays, …)

– WCET must be derivable for schedulable unit (special caution
with usage of dynamic language constructs)

• Deterministic task execution

– Time tables or static/dynamic task priorities

– Preemptive task execution

– Run-time protocols for access to shared resources (dynamic
priority adjustment and non-preemptable code sections)

Verification

How do we perform schedulability analysis?

• Introduce abstract models of system components:

– Task model (computation requirements, timing constraints)

– Processor model (resource capacities)

– Run-time model (task states, dispatching)

• Predict whether task executions will meet constraints

– Use abstract system models

– Make sure that computation requirements never exceed

resource capacities

– Generate (partly or completely) run-time schedule resulting

from task executions and detect worst-case scenarios

Task model

void task1(Object *self, int p) {

Action1();

SEND(Period1, Deadline1, self, task1, p);

}

void task2(Object *self, int p) {

Action2();

SEND(Period2, Deadline2, self, task2, p);

}

void kickoff(Object *self, int p) {

AFTER(Offset1, &app1, p);

AFTER(Offset2, &app2, p);

}

main() {

TINYTIMBER(&app_main, kickoff, 0);

}

Implementation Abstract model

1τ

2τ

{ }1 1 1 1 1, , ,C T D Oτ =

{ }2 2 2 2 2, , ,C T D Oτ =

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #2
UpdatedMarch 18, 2013

3

Task model

The task model expresses the timing behavior of a task:

• The static parameters describe characteristics of a task
that apply independent of other tasks.
– Derived from the specification or implementation of the system

– For example: period, deadline, WCET

• The dynamic parameters describe effects that occur
during the execution of the task.
– Is a function of the run-time system and the characteristics

of other tasks

– For example: start time, completion time, response time

Task model

Static task parameters:

τ

i
= C

i
,T

i
, D

i
,O

i{ }i
τ

t
0

D

i

C

i

O

i
T

i

C

i
: (undisturbed) WCET

:
i

T period

D

i
: (relative) deadline

O

i
: (absolute) time offset

Task model

Dynamic task parameters:

τ

i
= C

i
,T

i
,D

i
,O

i{ }i
τ

s

i ,k
:start time of kth instance

f
i , k

:completion time of kth instance

R

i ,k
: response time of kth instance

a

i ,k
:arrival time of kth instance

τ

i ,k
: the kth instance of τ

i

f
i ,k

s
i ,k

a

i ,k
R

i ,k

,1iτ ,2iτ ,3iτ

R

i
= max

τ
i
∈T ,k ≥1

R
i ,k{ }

a

i ,k
= O

i
+ (k − 1) ⋅T

i
R

i ,k
= f

i ,k
− a

i ,k

(worst-case response time)

0
t

Task model

Different types of tasks:

• Periodic tasks
– A periodic task arrives with a time interval Ti

• Sporadic tasks

– A sporadic task arrives with a time interval ≥ Ti

• Aperiodic tasks

– An aperiodic task has no guaranteed minimum time between

two subsequent arrivals

� A priori schedulable real-time systems can only contain
periodic and sporadic tasks.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #2
UpdatedMarch 18, 2013

4

Processor model

Homogeneous processors:

• Identical processors

– WCET is a constant

Heterogeneous processors:

• Uniform processors

– WCET is the product of a basic execution time and a

scaling factor

• Unrelated processors

– WCET is not related for different processors

Run-time model

Task states:

• Waiting
– Task has not yet arrived for the first time, or has finished

executing but not re-arrived

• Ready
– Task has arrived and can potentially execute on the processor

(kept waiting in a ready queue)

• Running
– Task is currently executing on the processor

Dispatcher:

• A run-time mechanism that takes the first element (task)
in the ready queue and executes it on the processor.

Is this a good schedule?

Evaluating a real-time system

An important part of real-time system design is to

have techniques that generate good schedules.

1τ

2τ

t5 10 15 20 250

What do we need to decide the quality?

Evaluating a real-time system

How do we measure and compare performance?

• Quantify system performance

– Choose useful performance measures (metrics)

• Perform objective performance analysis

– Choose suitable evaluation methodology

– Examples: theoretical and/or experimental analysis

• Compare performance of different designs

– Make trade-off analysis using chosen performance measures

• Identify fundamental performance limitations

– Find “bottleneck” mechanisms that affect performance

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #2
UpdatedMarch 18, 2013

5

Performance measures

Why do we need it?

• To objective evaluate different design solutions and
choose the “best” one

• To rubberstamp a system with performance potential
or quality guarantees (cf. “Intel inside”, “ISO 9000”)

“Yardsticks” by which the performance of a

system is expressed.

Performance measures

What is required by a performance measure?

• Must be concise to avoid ambiguity

– preferably a single number

• use a weighted sum of constituent local performance measures

– should reflect user-perceived utility

• no artificial measures should be used

– some measures are contradictory

• processing speed vs. power consumption in a handheld computer

– some measures are misleading

• MIPS (million instructions executed per second)

Performance measures

What is required by a performance measure?

• Must provide efficient coding of information

– determine relevance of individual pieces

• Must provide objective basis for ranking

– use same set of applications for evaluations

• Must provide objective optimization criteria for design

– identify application-sensitive criteria

• Must provide verifiable facts

– use measures that can be derived for a real system

Performance measures

Traditional performance measures:

Throughput

Average # of operations/data processed by system per time unit

Reliability

Probability that system will not fail in a given time interval

Availability

Fraction of time for which system is up (providing service)

These measures do not take deadlines into account!

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #2
UpdatedMarch 18, 2013

6

Performance measures

Suitable real-time performance measures:

Laxity
Amount of time that the start of a task can be delayed without
it missing its deadline (calculated before scheduling)

X = min

τ
i
∈T

D
i
− C

i{ }

Lateness
Amount of time by which a task completes after its deadline
(calculated after scheduling)

L = max

τ
i
∈T

R
i
− D

i{ }

Successful tasks
Number of tasks that complete on or before their deadline
(calculated after scheduling)

N

success
= τ

i
∈T : R

i
− D

i
≤ 0{ }

Jitter

Amount of deviation from expected periodicity of a task’s completion
(calculated after scheduling)

J

output
= max

τ i ∈T ,k≥1
f
i ,k+1

− f
i ,k() − T

i{ }

Performance measures

Cost function – a general real-time performance measure

Cumulative value:

Value associated with a task as a function of its completion time

()
i

i
C v f

τ ∈

=∑
T

Non real-time

()iv f

i
f

Soft real-time

iD

Performance measures

Cost function – a general real-time performance measure

Cumulative value:

Value associated with a task as a function of its completion time

()
i

i
C v f

τ ∈

=∑
T

()iv f

i
f

Hard real-time

iD

Performance measures

Cost function – a general real-time performance measure

Cumulative value:

Value associated with a task as a function of its completion time

()
i

i
C v f

τ ∈

= ∑
T

()iv f

i
f

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #2
UpdatedMarch 18, 2013

7

End of lecture #2

