
EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #10
UpdatedApril 16, 2013

1

Parallel & Distributed

Real-Time Systems

Lecture #10

Risat Pathan

Department of Computer Science and Engineering

Chalmers University of Technology

Handling on-line changes

Architecture

Target

environment

Static (periodic) tasks

1
τ

2
τ

3
τ 4

τ

Hardware platform

Run-time system
S

S

S

A

A

Operator
panel

Operator
display

1
µ

2
µ 3

µ

TATAc

Aperiodic tasks

A
τ

transient faults

dynamic arrivals

mode changes

1
τ ′

2
τ ′

3
τ ′ 4

τ ′

Handling on-line changes

Origins of on-line changes:

• Changing task characteristics:
– Tasks execute shorter than their worst-case execution time.

– Tasks increase/decrease the values of their static parameters
as a result of, for example, mode changes.

• Dynamically arriving tasks:
– Aperiodic tasks (with characteristics known a priori) arrive

– New tasks (with characteristics not known a priori) enter the
system at run-time.

• Changing hardware configuration:
– Transient/intermittent/permanent hardware faults

– Controlled hardware re-configuration (mode change)

Handling on-line changes

Consequences of on-line changes:

• Overload situations:
– Changes in workload/architecture characteristics causes the

accumulated processing demands from all tasks to exceed the
capacities of the available processors.

– Question: How do we reject certain tasks in a way such that
the inflicted damage is minimized?

• Scheduling anomalies:
– Changes in workload/architecture causes non-intuitive

negative effects of system schedulability.

– Question: How do we avoid certain changes or use feasibility
tests to guarantee that anomalies do not occur?

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #10
UpdatedApril 16, 2013

2

Handling overload conditions

How do we handle a situation where the system
becomes temporarily overloaded?

• Best-effort schemes:
– No prediction for overload conditions.

• Guarantee schemes:
– Processor load is controlled by continuous acceptance tests.

• Robust schemes:
– Different policies for task acceptance and task rejection.

• Negotiation schemes:
– Modifies workload characteristics within agreed-upon bounds.

Handling overload conditions

Best-effort schemes:
Includes those algorithms with no predictions for overload

conditions. A new task is always accepted into the
ready queue so the system performance can only be
controlled through a proper priority assignment.

ready queue

task execution
always accepted

Best-effort scheduling: {Locke, 1986}

� In case of overload, the tasks with the minimum value density are

removed.

Handling overload conditions

Guarantee schemes:
Includes those algorithms in which the load on the

processor is controlled by an acceptance test executed
at each task arrival. If the task set is found schedulable,
the new task is accepted; otherwise, it is rejected.

ready queue

task execution
accepted

guarantee
routine

rejected

Dynamic scheduling: {Ramamritham and Stankovic, 1984}

� If a newly-arrived task cannot be guaranteed (EDF), it is either

dropped or distributed scheduling is attempted.

Handling overload conditions

Robust schemes:

Includes those algorithms that separate timing constraints
and importance by considering two different policies:
one for task acceptance and one for task rejection.

ready queue
task

execution

scheduling
policy

planning

reject queue rejection
policy

reclaiming
policy

RED (Robust Earliest Deadline): {Buttazzo and Stankovic, 1993}

� Includes deadline tolerance (for acceptance) and importance

value (for rejection) of each task.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #10
UpdatedApril 16, 2013

3

Handling overload conditions

Negotiation schemes:

Includes those algorithms that attempt to modify timing
constraints and/or importance within certain specified
limits in an attempt to maximize system utility.

QoS Negotiation Algorithm: {Abdelzaher, Atkins and Shin, 1997}

� Primary and alternate Quality-of-Service levels (constraint

configurations) given for each task.

ready queue
task

execution

service
contract

negotiation

constraint
configurations

Handling overload conditions

Cumulative value:

The cumulative value of a scheduling algorithm A is a
performance measure with the following quality:

()
1

n

A ii
v f

=
Γ =∑

*

A AϕΓ ≥ Γ

Competitive factor:

A scheduling algorithm A has a competitive factor
if and only if it can guarantee a cumulative value

Aϕ

where is the cumulative value achieved by an optimal
clairvoyant scheduler.

*Γ

Handling overload conditions

Limitations of on-line schedulers: (Baruah et al., 1992)

In systems where the loading factor is greater than 2 and tasks’

values are proportional to their computation times, no on-line

algorithm can guarantee a competitive factor greater than 0.25.

Observations:
– If the overload has an infinite duration, no on-line algorithm can

guarantee a competitive factor greater than zero.

– Even for intermittent overloads, plain EDF has a zero competitive factor.

– The Dover algorithm has optimal competitive factor (Koren & Shasha, 1992)

– Having the best competitive factor among all on-line algorithms does not
mean having the best performance in any load condition.

Handling aperiodic tasks

Architecture

Target

environment

Static (periodic) tasks

1
τ

2
τ

3
τ 4

τ

Hardware platform

Run-time system
S

S

S

A

A

Operator
panel

Operator
display

1
µ

2
µ 3

µ

Aperiodic task

A
τ

centralized arrival

distributed arrival

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #10
UpdatedApril 16, 2013

4

Handling aperiodic tasks

Aperiodic task model:

• Spatial:
– The aperiodic task arrival is handled centralized; this is the case

for multiprocessor servers with a common run-time system.

– The aperiodic task arrival is handled distributed; this is the case
for distributed systems with separate run-time systems.

• Temporal:
– The aperiodic task is assumed to only arrive once; thus, it has

no period.

– The actual arrival time of an aperiodic task is not known in
advance (unless the system is clairvoyant).

– The actual parameters (e.g., WCET, relative deadline) of an
aperiodic task may not be known in advance.

Handling aperiodic tasks

Approaches for handling aperiodic tasks:

• Server-based approach:

– Reserve capacity to a "server task" that is dedicated to handling

aperiodic tasks.

– All aperiodic tasks are accepted, but can only be handled in a

best-effort fashion ⇒ no guarantee on schedulability

• Server-less approach:

– A schedulability test is made on-line for each arriving aperiodic

task ⇒ guaranteed schedulability for accepted task.

– Rejected aperiodic tasks could either be dropped or forwarded

to another processor (in case of multiprocessor systems)

Handling aperiodic tasks

Challenges in handling aperiodic tasks:

• Server-based approach:

– How do we reserve enough capacity to the server task without

compromising schedulability of hard real-time tasks, while yet

offering good service for future aperiodic task arrivals?

• Server-less approach:

– How do we design a schedulability test that accounts for arrived

aperiodic tasks (remember: they do not have periods)?

– To what other processor do we off-load a rejected aperiodic task

(in case of multiprocessor systems)?

Aperiodic servers

Handling (soft) aperiodic tasks on uniprocessors:

• Static-priority servers:
– Handles aperiodic/sporadic tasks in a system where periodic

tasks are scheduled based on a static-priority scheme (RM).

• Dynamic-priority servers:
– Handles aperiodic/sporadic tasks in a system where periodic

tasks are scheduled based on a dynamic-priority scheme (EDF).

• Slot-shifting server:
– Handles aperiodic/sporadic tasks in a system where periodic

tasks are scheduled based on a time-driven scheme.

Primary goal: to minimize the response times of aperiodic tasks
in order to increase the likelihood of meeting their deadlines.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #10
UpdatedApril 16, 2013

5

Static-priority servers

Background scheduling:

Schedule aperiodic activities in the background; that is,
when there are no periodic task instances to execute.

Advantage:
– Very simple implementation

Disadvantage:

– Response time can be too long

Static-priority servers

Background scheduling:

8 12 t0

aperiodic
requests

t0 6 12 18 24

t0 10 20

162

R1 = 7 R2 = 6

τ

1
= C

1
= 2,T

1
= 6{ }

τ

2
= C

2
= 4,T

2
= 10{ }

2 / 6 4 /10 0.73U = + ≈

1
τ

2
τ

Static-priority servers

Polling Server (PS): (Lehoczky, Sha & Strosnider, 1987)

Service aperiodic tasks using a dedicated task with a
period Ts and a capacity Cs.
If no aperiodic tasks need service in the beginning of PS’s
period, PS suspends itself until beginning of next period.
Unused server capacity is used by periodic tasks.

Advantage:
– Much better average response time

Disadvantage:

– If no aperiodic request occurs at beginning of server period, the

entire server capacity for that period is lost.

Static-priority servers

Polling Server:

82

R1 = 5 R2 = 3

12 19

R3 = 6 R4 = 3

0 t

aperiodic
event

t0 4 8 1612 20 24

10 t0

Cs

5 15 20 25

t0 6 12 18 24

1
τ

2
τ

τ

1
= 1,4{ }

τ

2
= 2,6{ } U ≈ 0.98

τ

S
= 2,5{ }

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #10
UpdatedApril 16, 2013

6

Static-priority servers

Deferrable Server (DS): (Lehoczky, Sha & Strosnider, 1987)

Service aperiodic tasks using a dedicated task with a
period Ts and a capacity Cs.
Server maintains its capacity until end of period so that
requests can be serviced as capacity is not exhausted.

Advantage:
– Even better average response time because capacity is not lost

Static-priority servers

Deferrable Server:

1
τ

2
τ

82

R1 = 2 R2 = 2

12 19

R3 = 3 R4 = 1

0 t

aperiodic
requests

t0 4 8 1612 20 24

10 t0

Cs

5 15 20 25

t0 6 12 18 24

τ

1
= 1,4{ }

τ

2
= 2,6{ } U ≈ 0.98

τ

S
= 2,5{ }

Static-priority servers

Feasibility test for RM + DS:

A set of n periodic tasks and one aperiodic server are

schedulable using RM if the processor utilization does

not exceed:

URM +DS = US + n
US + 2

2US + 1








1/n

− 1










Static-priority servers

Feasibility test for RM + DS:

Rules-of-thumb:

n→ ∞ ⇒ U

RM+DS
≈ 0.652 for U

S
= 0.186()

U

RM +DS
> U

RM
 for U

S
> 0.4()

U

RM +DS
≤ U

RM
 for U

S
≤ 0.4()

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #10
UpdatedApril 16, 2013

7

(Other) Static-priority servers

Priority Exchange Server: (Lehoczky, Sha & Strosnider, 1987)

Preserves its capacity by temporarily exchanging it for the
execution time of a lower-priority periodic task.

Sporadic Server: (Sprunt, Sha & Lehoczky, 1989)

Replenishes its capacity only after it has been consumed
by aperiodic task execution.

Slack Stealing: (Lehoczky & Ramos-Thuel, 1992)

Does not use a periodic server task. Instead, it creates a
passive task which attempts to make time for servicing
aperiodic tasks by ”stealing” processing time from periodic
tasks without causing their deadlines to be missed.

Static-priority servers

Non-existence of optimal servers: (Tia, Liu & Shankar, 1995)

For any set of periodic tasks ordered on a given static-priority scheme

and aperiodic requests ordered according to a given aperiodic

queuing discipline, there does not exist any valid algorithm that

minimizes the response time of every soft aperiodic request.

For any set of periodic tasks ordered on a given static-priority scheme

and aperiodic requests ordered according to a given aperiodic

queuing discipline, there does not exist any on-line algorithm that

minimizes the average response time of the soft aperiodic requests.

Dynamic-priority servers

Dynamic Priority Exchange Server: (Spuri & Buttazzo, 1994)

Preserves its capacity by temporarily exchanging it for the
execution time of a lower-priority (longer deadline) task.

Dynamic Sporadic Server: (Spuri & Buttazzo, 1994)

Replenishes its capacity only after it has been consumed by
aperiodic task execution.

Total Bandwidth Server: (Spuri & Buttazzo, 1994)

Assign a (possibly earlier) deadline to each aperiodic task
and schedule it as a normal task. Deadlines are assigned
such that the overall processor utilization of the aperiodic
load never exceeds a specified maximum value Us.

Slot-shifting server

Slot-Shifting Server: (Fohler, 1995)

Schedules aperiodic tasks in the unused time slots in a
schedule generated for time-driven dispatching.

Associated with each point in time is a spare capacity that
indicates by how much the execution of the next periodic
task can be shifted in time without missing any deadline.

Whenever an aperiodic task arrives, task instances in the
static workload may be shifted in time – by as much as the
spare capacity indicates – in order to accommodate the
new task.

EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2012/2013 Lecture #10
UpdatedApril 16, 2013

8

End of lecture #10

