
Execution Time Analysis for Embedded Real-Time Systems

Andreas Ermedahl

Dept. of Computer Science and Electronics

Mälardalen University, SE-721 23 Väster̊as, Sweden

Jakob Engblom

Virtutech AB, Norrtullsgatan 15

SE-113 27 Stockholm, Sweden

1 Introduction

This chapter deals with the problem of how to estimate and analyze the execution time of embedded real-time

software, in particular the worst-case execution time.

A real-time system must react within precise time constraints, related to events in its environment and

the system it controls. This means that the correct behavior of a real-time system depends not only on

the result of the computation but also on the time at which the result is produced. Thus, knowing the

execution-time characteristics of a program is fundamental to the successful design and execution of a real-

time system [22, 57].

The size and the complexity of the software in real-time system are constantly increasing. This makes it

hard, or even impossible, to perform exhaustive testing of the execution time. Furthermore, the hardware

used in real-time systems is steadily becoming more complex, including advanced computer architecture

features such as caches, pipelines, branch prediction, and out-of-order execution. These features increase

the speed of execution on average, but also makes the timing behavior much harder to predict, since the

variation in execution time between fortuitious and worst cases increase.

Execution time analysis is any structured method or tool applied to the problem of obtaining information

about the execution time of a program or parts of a program. The fundamental problem that a timing analysis

has to deal with is the following: the execution time of a typical program (or other relevant piece of code)

is not a fixed constant, but rather varies with different probability of occurrence across a range of times.

1 INTRODUCTION 2

��
������	
�

����
������	
�

���
������	
�

�����

�	
����	��

����
	��������

��������
�	���

���	���
�������

����
��

��	���	��

�	������
�������

Figure 1.1: Continuum of timing criticality

Variations in the execution time occur due to variations in input data, as well as the characteristics of the

software, the processor and the computer system in which the program is executed.

The worst-case execution time (WCET) of a program is defined as the longest execution time that will

ever be observed when the program is run on its target hardware. It is the most critical measure for most

real-time work. The WCET is needed for many different types of system analysis for real-time systems. For

example, it is a critical component of schedulability analysis techniques, it is used to ensure that interrupts

are handled with sufficiently short reaction times, that periodic processing is performed quickly enough, and

that operating-system calls return to the user application within a specified time-bound. The simplest case

is the question whether a particular small piece of code executes within an allocated time budget.

The best-case execution time (BCET) is defined as the shortest time ever observed. The BCET can for

example, be of interest in case some code should not finish too quickly, or to analyze the potential jitter in

execution time. The average-case execution time (ACET) lies somewhere in-between the WCET and the

BCET, and depends on the execution time distribution of the program.

1.1 The Need for Timing Analysis

Reliable timing estimates are important when designing and verfying many type of embedded systems

and real-time systems. This is especially true, when the system is used to control safe critical products

such as vehicles, aircraft, military equipment and industrial plants. Basically, only if each hard real-time

component of such a system fulfills its timing requirements the whole system could be shown to meet its

timing requirements.

However, whether timing analysis is needed for a program is not a black-and-white question. In reality,

1 INTRODUCTION 3

there is a continuum of criticality for real-time systems, as shown with some typical examples in Figure 1.1.

Depending on the criticality of the system, an approximate or less accurate analysis might be acceptable.

It is really a business issue, where the cost of a timing-related failure has to be weighed against the cost of

various means of preventing or handling such a failure.

In many embedded systems, only some part of the system is actually time critical. In a mobile telephone,

for example, the parts which deals with communication and signal coding have hard real-time requirements,

while the user interface is less time-critical. The fact that only part of the code is timing-critical help make

timing analysis feasible, since trying to analyze the total system would be virtually impossible due to its size

and complexity.

For other type of systems the goal is to maintain a high throughput on average, and not necessarily that

each task is completed within specified time limits. In a telecom system, for example, it is acceptable that

calls are dropped occasionally, and that parts of the system crash and reboot. Glitches are annoying but not

dangerous as long as the system as a whole keeps running.

1.2 WCET Analysis

Since the WCET is a key component in the analysis of real-time systems, a lot of research and tool devel-

opment has been devoted to the WCET determination problem. A timing analysis with a main focus on

WCET determination is called a WCET analysis, even though most tools also produce other information

like the BCET or maximum stack depth.

Figure 1.2 shows how different timing estimates relate to the WCET and BCET. The example program

has a variable execution time, and the darker curve shows the probability distribution of its execution time.

Its minimum and maximum are the BCET and WCET respectively. The lower gray curve shows the set

of actually observed and measured execution times, which is a subset of all executions. Its minimum and

maximum are the minimal measured time and maximal measured time respectively. In most cases the

program state space and the hardware complexity is too large to exhaustively explore all possible executions

of the program. This means that the measured times will in many cases overestimate the BCET and

underestimate the WCET.

1 INTRODUCTION 4
��
��
���
��
��
	

��

��
�

�

��������

���
�

���

���
�
���	�

���

���
�
���	�

��	����
�
����
�

���

�������
�
����
�

���

��

����
����
�

���	�
��
���
�
���	�
�

�
����
�

�
�����	
���
�
�������

�
�����	
���
�

���

������������	
��
����	�

Figure 1.2: Example distribution of execution time

A WCET analysis derives an estimate of the WCET for a program or part of the program. To guarantee

that no deadline are missed, a WCET estimate must be safe (or conservative), i.e., a value greater than or

equal to the WCET. To be useful, avoiding over allocation of system resources, the estimate must also be

tight, i.e., provide little or no overestimation compared to the WCET. Similarly, a BCET estimation should

not overestimate the BCET and provide acceptable underestimations. Some real-time literature does not

maintain the crucial distinction between the WCET and the WCET estimates derived by timing analysis

tools. We will strive to avoid such confusion in this chapter.

It should be noted that all timing analysis techniques presented here are focussed on the issue of timing

a single program or code fragment. This means that timing analysis does not consider that several tasks

or programs normally are run togther on the same computer, that there might be a operating system (OS)

which schedules and interrupts the programs, etc. All such interactions are handled on a higher analysis

level, e.g., using schedulability analysis, where it should be shown that the whole computer system works

even in the most stressful situations. For such analyses reliable WCET estimates are an important input.

The following two sections will go explain in more detail the issues that any timing or WCET analysis

must consider. In particular, both the software behavior (Section 2), and the hardware timing (Section 3)

must be considered in order to derive reliable timing estimates.

Timing and WCET analysis can be performed in a number of ways using different tools. The two

2 SOFTWARE BEHAVIOR 5

main methodologies employed are measurements (Section 4) and static analyses (Section 5). In general,

measurements are suitable for less time-critical software, where the average case behavior is of interest.

For time-critical software, where the WCET must be known, static analysis or some type of hybrid method

(Section 6), is preferable. The research invested in static WCET analysis has resulted in sophisticated

commercial tools (Section 7) able to produce estimates within a few percent of the WCET. Experiences from

industrial usage of these tools (Section 8) and a chapter summary (Section 9) complete this chapter.

2 Software Behavior

One of the main reasons for the success of computers in embedded applications is that they are programmable,

making it possible to use a standard part (the processor) for a variety of applications, and enabling new

functions that could never have been implemented using fixed-function logic. However, this also means that

in order to correctly analyze and understand the behavior and timing of an embedded system we need to

understand the software behavior.

Embedded software comes in many different flavors, using many different languages. In our experience,

most timing-critical real-time software is written in C or Ada, with some assembly language. It is also

common to use various code-generating tools working on a high-level model of the software (for example,

MatLab/Simulink, LabView, UML, StateCharts, SDL, and Esterel) to make programming more efficient.

This means that a wide variety of codes and coding styles have to be considered for WCET analysis tools.

There have been some studies on the properties of embedded software, and they indicate a huge range of

programming practices, from very disciplined simple and predictable code, to code with deep loop nesting,

complex if-statements, and significant use of pointers [6, 9, 49]. Dynamic memory allocation is rare due to

resource contraints, but the logic can be very convoluted.

The software behavior contributes a large part of the execution time variability of a program, often

dominating the effect of local hardware timing variability [32]. Note that this does not mean that hardware

timing analysis is unnecessary; we need the hardware timing in order to get a concrete execution time. But

we need to have a good understanding of the software behavior in order to get a precise analysis result.

As illustrated in Figure 1.3, even small codes might exhibit variable and interesting behavior. The

2 SOFTWARE BEHAVIOR 6

��� ��������	
���
���
��
��� ��
���	�������
����
��� �����	���	�
���������������
���
����	����� !� "��#
$��
����	����� !� "��#
%�� ������������	��
�	�����	�
��
&��
����������'#
(��
����������'#
)�� ���*	����+
���+
����
���������	�
��
�'�� ����������������	���#
���� ����������������	���#
���� ��� ���	��
	��������	��
�	�����
�
���� ,*�-,�"���������.�����#
���� /

�$�� ���*���������	���	�
�
�%��
�����������
����	����
�&��
���
���'#
�(��
���0���'#
�)�� ���	����'#
�'�� +�
���
�1���	����
����
��0�1�$�
���� 0..#
����
��0�2��	���3��	�#
���� ���	�������	��.�0�4��#
�$��
..#
�%�� /
�&�� ���
������	�#
�(�� /

Figure 1.3: Code illustrating software variability

example code consists of two functions task N and convert. The first function reads two values from two

different sensors1 and calls convert twice, with the values read in each case. The results of the calls to

convert are used to set an actuator. The convert function contains a typical case of software variability,

having a loop which iterates a variable number of times depending on input data, and conditional statements

where one branch takes longer than the other branch to execute.

A good real-life example of input-dependent flow is the message-polling loop described in [15], where the

number of CAN messages received over a network can vary in number, immediately impacting the execution

time of an interrupt handler. On the other hand, some compute-oriented codes exhibit a single possible

execution path, by virtue of having no input-dependent loops or decision statements [65]. Instructions in

such codes will only exhibit execution-time variation due to hardware effects. This fact has triggered research

for rewriting programs to only have single-path behavior [44].

Note that complex software behavior is equally problematic for static tools and measurement techniques.

A program with complex structure and variable flow will be just as hard to measure correctly as to analyze

statically. Real-time code has to be written for predicability and analyzability regardless of the techniques

used to analyze their timing.
1This is a simplification compared to a real system where the sensor values needs to be calibrated after reading.

3 HARDWARE TIMING 7

3 Hardware Timing

All timing analysis ultimately has to deal with the timing of the hardware on which a program is executing,

and the precise sequence of machine instructions that actually make up a program. As hardware gets more

complicated, analyzing the hardware timing behavior becomes progressively harder.

The main complexity in hardware timing analysis is the behavior of the processor itself, along with its

memory system. Other components of a computer system like IO, networks, sensors, and actuators have less

impact on the program timing. They usually dictate when a program is executed in response to external

stimuli, but do not affect the instruction-level execution time to any appreciable extent.

Processor instruction timing has been getting increasingly variable over time, as features improving

average-case performance and overall throughput are invented and put in use. Typically, performance im-

provements are achieved using various speculation and caching techniques, with the effect that the span

between best-case and worst-case times increase. The goal is for the common case or average case to be

close to the best case, and that this best case is better than the best-case times for previous processors.

In the process, the worst case typically gets worse, and the precise timing becomes more dependent on the

execution history.

Traditional 8-bit and 16-bit processors typically feature simple architectures where instructions have

fixed execution times, and each instruction has minimal effect on the timing of other instructions. There is

little variability in execution time. Somewhat more complex 32-bit processors are designed for cost-sensitive

applications. Typical examples are the ARM7, ARM Cortex-M3, and NEC V850E. With simple pipelines

and cache structures, variability is present but fairly easy to analyze and limited in scope.

The high end of the embedded market requires processors with higher performance, and these are be-

ginning to deploy most of the variability-inducing features like caches, branch prediction, and aggressive

pipelining. These range from the ARM11 and MIPS24k designs where the pipeline is still in-order, to full

out-of-order superscalar processors like the PowerPC 755 and 7448, or even Intel Xeons. Analyzing such

processors require quite sophisticated tools and methods in the hardware timing analysis. Nevertheless,

there have been impressive success stories for tools analyzing quite complicated hardware systems with good

results [20, 52].

3 HARDWARE TIMING 8

�,��
�5���,5�
�

���
!
"�
	�

�
�����	

�#$�%�&
���
!
�����

�
�����	

�#$%��

�
�

���
'��
��	�
��

����	�
���	�
���
�
�	�
����	�

��
���

�#�%��

Figure 1.4: Pipelining of instruction execution

The mainstream trend in computer architecture is still to add ever-more speculation in order to improve

overall performance. However, it is clear that embedded computer architecture is becoming its own field,

and that some designs actually have the issues of real-time systems as their primary design requirements.

Such designs emphasize predictability, short interrupt latencies, and bounded worst-cases over maximal

average-case performance.

3.1 Memory Access Times

Even disregarding caches, the time to access main memory on a modern system is highly variable. Modern

RAM technology uses a variety of techniques to take advantage of access locality to improve performance,

but this also increases variability in execution time. For static analysis, this means that knowing the precise

sequence of addresses of memory accesses becomes important. It is also common to mix different memory

technologies and thus memory access times in a system, and at the very least the area of memory accessed

by an instruction needs to be known for a tight analysis to be performed [15, 52].

3.2 Long Timing Effects

Conventional wisdom in WCET analysis used to hold that the timing of instructions flowing through a

simple pipeline (in-order issue, single instruction per cycle, in-order completion) could be accounted for by

pairwise combination of instructions, as illustrated in Figure 1.4. However, this is not true. Even very simple

three-stage pipelines exhibit a phenomenon known as Long Timing Effects, LTEs. The essence of an LTE is

that interactions occur between instructions that are not adjacent to each other, as illustrated in Figure 1.5.

The example in Figure 1.5 shows an interaction between instructions A and C that is not visible when

just analyzing the neighbouring pairs of instructions AB and BC. It has been shown that such timing effects

3 HARDWARE TIMING 9

�#$%�(�#�%��

�#$�%�) �#��%�)

�#$��%�*�

�

�

��,�(

�5��

�,5�
�

�5*�
�

�*�(
�,5*�
+&

���
����	�
���
����
��
�����	
���
�

�#�%�(

���������	�
�
���

��
�������
�	�
�
�	

����
���
�
�����

Figure 1.5: Example long timing effect

can occur across arbitrary distances [12, 14]. In experiments, some processors have been shown to exhibit

very many very long LTE [47]. The practical consequence of this is that a static WCET analysis tool has

to be very careful about how interactions between instructions are analyzed, and that is has to ensure that

all possible LTEs are found or a safe margin added to account for them. Note that since WCET tools are

allowed to selectively overestimate execution times, this problem is tractable. There have also been attempts

to make a processor not have any LTEs, thus facilitating analysis [47].

3.3 Caches

Caches add to the variability of execution time of a program, and make the difference between the worst

case and average case quite large [62]. This effect is well-known, and cache optimization is a concern for

any performance-oriented programmer. On average, caches work well, but a poorly designed cache or poor

use of a cache has the potential to cause disastrous worst cases. From a timing analysis and predictability

perspective, caches with least-recently-used replacement policies are preferrable, since their state converges

over time, making the behavior more predictable [20].

The traditional assumption in analyzing cache behavior is that misses are always worse than cache hits,

but as discussed below in Section 3.5 this is not necessarily true on all processors.

In order to overcome some of the unpredictability of caches for critical code, many embedded processors

offer the ability to lock parts of the cache. This makes it possible to obtain predictable timing for selected

3 HARDWARE TIMING 10

code, even in the presence of interrupts and task switching [43, 61]. An extreme variant of this is to use a

software-controlled cache, where the programmer has complete control and responsibility for what is in the

cache and what is not.

3.4 Branch Prediction

Dynamic branch prediction mechanisms try to predict which way a particular branch instruction will go

(taken or not-taken), long before the branch has actually been resolved in the processor pipeline. The

processor will then speculatively fetch instructions along the predicted path, and if the prediction was

wrong, the speculatively fetched instructions will have to be squashed and instruction fetching redirected.

Thus, branch prediction can affect the state of both instruction- and data cache, as well as the processor

pipeline, and it has a large impact on the variability in instruction execution time.

Effective branch prediction is very important in modern processors with deep pipelines and high clock

frequencies. Very sophisticated predictor mechanisms have been developed that on average achieve very high

prediction rates. Indeed, to get above around 75 % accuracy, dynamic prediction is necessary [13].

However, these branch predictors typically have complicated worst-case behavior. There are examples of

cases where executing more iterations of an inner loop takes less time than iterating fewer iterations [13],

due to branch prediction effects in a loop which is visited several times. Finally, just like the FIFO caches

discussed in Section 3.5, dynamic branch predictors do not necessarily converge to a known state over time,

thus complicating WCET analysis.

3.5 Timing Anomalies

When WCET research started working on complex, out-of-order processors with caches and branch predic-

tion, a phenomenon known as timing anomalies was observed [39]. Timing anomalies are cases where a local

worst case does not entail the globally worst case. Examples are that a cache hit for a particular instruction

causes a longer execution time for a program than a cache miss.

Timing anomalies are usually associated with out-of-order dynamic scheduling of instructions. Most

anomalies are similar to the known scheduling anomalies studied in scheduling theory, where making a

3 HARDWARE TIMING 11

certain task (instruction) faster can cause an entire schedule to take longer. As noted in [46] there are some

cases where the behavior of processors go beyond scheduling anomalies, since a dynamic decision in a branch

predictor can cause the actual set of instructions executed to change.

A strict in-order pipeline does not suffer timing effects in and of itself [12, 39]. However, the cache

attached to such a pipeline might. For example, a miss in a cache using the FIFO replacement policy might

create a better cache state for later code, causing the overall execution to speed up. Since the FIFO cache

has a potentially infinite memory, this can cause problems at any later point in time [46].

A variant of a timing anomaly called an acceleration effect is that the global slow-down ensuing from a

slow-down of some instruction is greater than the local penalty. For example, an instruction being delayed

by 8 cycles causing the overall program to be delayed by 11 cycles, as seen in the examples in [39]. Such

acceleration effects can be unbounded [39].

3.6 Multicore and Multiprocessor Systems

The use of multiple processors and multiple processor cores is a clear trend in computer architecture. De-

pending on how systems are designed and programmed, using multiple processor cores can both benefit and

hinder timing analysis.

A system using many specialized processors, each with its own defined task, is easier to analyze than a

system combining all the tasks onto a single processor. Less interference between tasks and less competition

for shared resources like caches makes the analysis easier. Private memory for each processor is definitely

the recommended design here, as that helps predictability and reduces variability, at the expense of some

more work for the programmers. This design template is common in mobile phones, where you typically

find an ARM main processor combined with one or more DSPs on a single chip. Outside the mobile phone

space, the IBM-Sony-Toshiba Cell processor contains a PowerPC core along with eight DSP-style processors

designed with timing predictability in mind [27].

On the other hand, using a classic shared-memory multiprocessor model like that found in PCs and

servers makes it significantly harder to analyze the timing of programs. Programs might be interrupted

and scheduled on a different processor in mid-execution, and shared data will cause cache misses due to

4 TIMING BY MEASUREMENTS 12

cache coherency activity on other processors. Even with scheduling tricks like binding a particular task to

a particular processor, there are just too many complicating interacting factors to make any precise timing

analysis impossible.

3.7 Custom Accelerator Hardware

Various forms of accelerator hardware is becoming more common in embedded systems, implemented as part

of an ASIC, System-on-Chip, or FPGA. This means that real-time software will contain calls to activate

the accelerator hardware, and that the WCET analysis will need to account for these calls. This does not

have to make WCET analysis more difficult, as the execution time of accelerator functions is typically fixed

or easy to compute. Compared to a software implementation of the same function, hardware accelerators

typically exhibit much simpler behavior and less variation. The support necessary in the WCET analysis

tool is to be able to identify calls to hardware accelerators, and to provide information about the time the

calls take.

4 Timing by Measurements

The classic method for obtaining information about the execution time of a program is to execute the program

many times with different input data, and then measure the execution time for each test run. Finding the

input that causes the WCET to occur is very difficult in the general case, and guaranteeing that it has been

found is basically impossible without some form of static analysis. Nevertheless, measurements are often

the only means immediately at the disposal of a programmer, and are useful when the average case timing

behavior of the program is of interest.

On the hardware side, the measurement method has the potential advantage of being performed on the

actual hardware. This avoids the need to construct a model of the hardware as required by static analysis

techniques (an advantage shared with hybrid analysis techniques as discussed below in Section 6). On the

other hand, measurement requires that the target hardware is available, which might not be the case for

systems where hardware is developed in parallel with the software [59].

Note that as hardware gets more complex and execution-time variability increases (see Section 3), it

4 TIMING BY MEASUREMENTS 13

becomes harder and harder to explore all possible timing with measurements. A static analysis tool has the

advantage that it in principle can consider all possible executions and thus the entire possible execution-time

span.

Measurements can be performed in the lab prior to software deployment, or in the field after deployment.

Measuring in the field has the advantage that only real executions are observed, but the clear disadvantage

that the data is obtained only after the system has been fielded. If some mistake was made when dimensioning

the system, timing-related failures could occur in the field. For systems that can tolerate occasional timing

problems and which are continuously upgraded, online measurements of performance can be immensely

useful.

4.1 Measurement Techniques

Over the years, many software- and hardware-based timing measurement techniques have been developed [56].

We ignore manual methods like using a stopwatch, as that is too low in accuracy for real-time code. There

are some issues that all measurement methods needs to address:

• Probe effect : Measuring a system might cause the timing to change. This is especially common when

the program is instrumented or extended with measurement support.

• Resolution: Executing code can take a very short time, and the resolution of the timing system has to

be fine enough to accurately capture the variations that occur. Typically, you want microseconds or

better resolution.

• Interruptions: The program under measurement might be interrupted by hardware or operating-system

scheduling intervals. This will lead to intermittent large increases in the end-to-end execution time of

a program, and this effect needs to be identified and compensated for [67].

• Visibility : It is typically hard to deduce the detailed execution path that a program under measure

took in a particular measurement run. This leads to problems interpreting the results and attributing

execution time appropriately [15, 67].

4 TIMING BY MEASUREMENTS 14

Most of these problems can be resolved by designing a hardware platform which supports debugging and

timing measurements from the outset. Today, built-in debug support in embedded processors is improving

thanks to Moore’s law, allowing more functionality to be put on a single chip. Still, far from all embedded

computer platforms have useful debug and analysis features.

Other issues that need to be considered when selecting a suitable measurement technique are Cost, e.g.,

special purpose hardware solutions, such as an emulator, are more often costly than general purpose ones,

such as an oscilloscope. Availability, not all type of target systems are using an OS with suitable timing

facilities support. Retargetability, a solution suitable for a particular processor and hardware platform might

not be directly applicable on another one [56, 67].

Some of the more important measurement techniques used in practice today are:

• Oscilloscope and logic analyzers: Both these mehtods look at the externally visible behavior of a system

while it is running, without affecting its execution. Using an oscilloscope typically involves adding a

bit-flip on an externally accessible pin of the processor to the program segments of interest, and then

observing the resulting waveform to divine the periodicity and thus the execution time [56, 67]. A logic

analyzer looks at the data- or address bus of the system and can see when certain instructions are

being fetched, greatly improving the visibility. However, it requires that relevant memory transactions

do reach the bus, which not necessarily the case on a system with a cache.

• Hardware traces: Hardware traces and debug ports are extra features added on-board processor chips to

help debugging and inspection. The most well-known example is the ARM Embedded Trace Macrocell

(ETM), and JTAG and Nexus debug interfaces. Note that such interfaces while powerful often have

particular limitations that can make their use more complicated than one might think [3].

• High-resolution timers: Adding code to a program to get timing information from timers in the system,

and then collect start and stop times. Sometimes, special clock hardware is added to a system for this

purpose. This will slightly modify the program code, under programmer control.

• Performance counters: Most high-end processors from families like x86, PowerPC, and MIPS offer

built-in performance counters which can be used to determine details about the performance of pro-

4 TIMING BY MEASUREMENTS 15

(a) Emulator (b) Logic analyzer (c) Oscilloscope

Figure 1.6: Tools for dynamic timing analysis

grams. However, such mechanisms are typically oriented towards spotting hot-spots and performance

problems in a program, and less towards reliable and precise execution-time measurements.

• Profilers: Profilers are typically provided with compilers. They are dependent on good timing sources

in hardware to obtain time measurements, but can provide very good insight into where a program is

spending its time. Profilers can use periodic interrupts to sample program execution, which does not

provide for very precise measurements, or instrument the code, which creates a probe effect.

• Operating system facilities: Operating system support for timing measurement can take many forms.

High-water marking is a common feature of real-time operating systems, where the longest execution

time observed for a particular task is continuously recorded. There can also be command-line tools

for timing programs available. Note that all OS-based solutions depend on the availability of suitably

precise timing facilities in the hardware.

• Emulator : An In-Circuit Emulator is a special-purpose hardware which behaves like a particular

processor, but with better debug and inspection capabilities. Provided that they do match the target

processor, they can provide very detailed data. Today, emulators are being replaced with hardware

trace facilities, since they are too hard to construct for current processors. There is also the risk that

they do not actually perfectly match the behavior of the real processor [67].

• Simulators: Processor simulators are sometimes used as a substitute for the real hardware for the

purpose of timing analysis. Developing and validating correct simulators is very hard [11, 12], and in

practice there are very few simulators which are guaranteed to be totally accurate.

5 TIMING BY STATIC ANALYSIS 16

��������	�� ��������	��
!��	���"#�$�
�����"��	�%
���&�"���
�	
	�%�
	����
��	��

�'"(� ")
�'"(� ")

�'"(���* "+,,
�'"(���* "+,,

�

� !

$

-

-��&-��&
������	� ������	�
������"���
��
���"��"�	
��
*��%��
"*����
���"��"��.��

/�&������/�&������
������	� ������	�
������"���
�'����	��"�	
�
��"*��%��

*����

����011011

����02+02+

����0+)0+)

��!!0303

��--0),0),

��$$0+20+2

����
�����������

�

$

�

!�

�

-

��������������
����	
��������
��

�����
���
��������������
������
��	
���
�������
����
�����
��

���������
����������������
�����

����������
�������
��

Figure 1.7: Phases in static WCET analysis

5 Timing by Static Analysis

As mentioned in Section 1.2 measurements are suitable for soft real-time applications where the average

timing is of interest. However, for hard real-time applications, where the WCET must be known, static

analysis techniques are preferable since they provide stronger evidence about the worst possible execution

time of a program.

A static timing analysis tool works by statically analysing the properties of the program that affect its

timing behavior. It can be compared to determining the stability of a bridge by investigating its design,

instead of building the bridge and testing it by running heavy trucks across it. Most static timing analysis

has been focussed on the WCET determination problem. Given that the inputs and analyses used are all

correct, such a static WCET analysis will derive a WCET estimate larger than or equal to the actual WCET.

In general, both the software behavior and the hardware timing must somehow be bounded in order to

derived a safe and tight WCET estimate. Consequently, static WCET analysis is usually divided into three

(usually independent) phases, as depicted in Figure 1.7: (1) A flow analysis phase, where information on the

possible execution paths through the program is derived (2) A low-level analysis phase, where information

about the execution time of program instructions is obtained. (3) A calculation phase, where the flow- and

5 TIMING BY STATIC ANALYSIS 17

timing information derived in the first two phases are combined to derive a WCET estimate.

Some tools integrate two or more of these phases. For example, the approach in [39] performs all three

functions at the same time, approximately executing the program. Nevertheless, all three phases are needed.

As discussed in Section 7, most tools also include a decoding phase, for reading the program to be analyzed,

and a visualization phase, for presenting the result of the WCET analysis.

5.1 Flow Analysis – Bounding the Software Behavior

The purpose of the flow analysis phase is to derive bounds on the possible execution paths of the analyzed

program, i.e., to find constraints on the dynamic behavior of the software. Such flow information can be

provided manually by the system programmer, or by an automatic flow analysis. The result is information

on which functions that get called, bounds on loop iterations, dependencies between conditionals, etc.

To find exact flow information is in general undecidable2: thus, any flow analysis must be approximate.

To ensure a safe WCET estimate, the flow information must be a safe (over)approximation including (at

least) all possible program executions.

Upper bounds on the number of loop iterations are needed in order to derive a WCET estimate at all.

Without such loop bounds, any instruction occuring in a loop might be taken an infinite number of times,

leading to an unbounded WCET estimate. Similarly, recursion depth must also be bounded. For the loop

in Figure 1.7 the flow analysis has derived a loop bound of 100. This bound has been added to the control

flow graph as a max #loop: 100 annotation.

Flow analysis can also identify infeasible paths, i.e., paths which are executable according to the control-

flow graph structure, but not feasible when considering the semantics of the program and possible input data

values. In contrast to loop bounds, infeasible path information is not required to find a WCET estimate,

but may tighten the result. An extreme case of an infeasible path is dead code. In Figure 1.7 the infeasible

path annotation max #C: 5 is specifying that node C can be executed at most five times.

There are a number of approaches to automatic loop-bound and infeasible path analyses, using techniques

such as abstract interpretation, symbolic execution, Presburger analysis, specialized data flow analyses, and
2A perfect flow analysis would solve the halting problem.

5 TIMING BY STATIC ANALYSIS 18

syntactical analysis on parse trees [1, 5, 23, 25, 26, 30, 33, 38, 39, 58]. Some of the methods are general,

while others are specialized for certain types of code constructs. The methods also differ in the type of codes

they analyze, i.e., source-, intermediate- (inside the compiler), or machine code. Most WCET analysis tools

allow the user to provide additional flow information as manual annotations [17, 21, 30, 34].

Once again, consider Figure 1.3, as an illustration of the work a flow analysis must perform. After a

careful examination of the system it has been found that the two sensors, SENSOR1 and SENSOR2, can give

readings within certain boundaries, 0 ≤ val1 ≤ 100 and 0 ≤ val2 ≤ 200.

After studying the code in convert we see that its loop will, for each call, iterate as many times as the

value of the input argument val. A safe upper loop bound for the two calls to convert in this program

would therefore be to assume that the loop iterates 200 times each time convert is called, i.e., a bound

corresponding to the largest possible value of val2.

However, the loop bound could be improved by noting that the first time that convert is called, its input

argument cannot be larger than 100. This gives that in total, for the whole execution of the program, the

loop in convert could iterate at most 100 + 200 = 300 times. Furthermore, we note that each time convert

is called, the j++; statements on row 22 could be executed at most five times. The last two observations are

not required to derive a WCET estimate, but could result in a tighter estimate.

5.2 Low-Level Analysis – Bounding the Hardware Timing

The purpose of low-level analysis is to determine and bound the possible timing of instructions (or larger

code parts) given the architectural features of the target hardware. For example, in Figure 1.7 each basic

block in the control-flow graph has been annotated with an upper execution time derived by a low-level

analysis. The analysis requires access to the actual binary code of a program, since it has to analyze the

processor timing for each instruction.

For modern processors it is especially important to analyze the effects of complex features such as

pipelines, caches, branch predictors, speculative, and out-of-order execution. As explained in Section 3,

these features all increase the variability in instruction timing and makes the prediction more complex.

Most static low-level analyses work by creating a timing model of the processor (and other hardware which

5 TIMING BY STATIC ANALYSIS 19

affect the instruction timing). The model does not need to include all hardware details, as long as it can

provide bounds on the timing of instructions. It common to use safe approximations where precise timing

is impossible or very difficult to provide. Typical examples include assuming that an instruction always

misses the cache, or that an instruction whose precise execution time depends on data always executes for

the longest possible time. Note that certain intuitive assumptions might not always be correct, as discussed

in Section 3.5.

One should note that standard cycle-accurate processor simulators differ in functionality from timing

models. When determining a timing bound for an instruction not just one single concrete execution of the

instruction, but rather all possible executions, must be accounted for by the timing model. This can be a

very large set of possible states for a complex processor.

The complexity of the low-level analysis depends on the complexity of the processor used. The more

complex the processor is, the more complex the timing model becomes. For simple 8- and 16-bit processors

the timing model construction is fairly straightforward, but still time consuming [42]. For somewhat more

advanced 16-bit and 32-bit processors, using simple (scalar) pipelines and maybe caches, the timing effects of

different hardware features can be analyzed separately, making the models fairly efficient and simple [12]. For

more advanced processors, the performance enhancing features like branch prediction, out-of-order execution,

and caches typically influence each other, and models that integrate all aspects of the processor timing

behavior are needed [20, 35, 52]. Obviously, such timing models can get very complex, with large state

spaces and corresponding long analysis times.

The low-level analysis in today’s WCET analysis tools are usually fully automatic. Only information

on the hardware characteristics, such as CPU model, processor frequency, cache- and memory layout, need

to be provided as parameters to the analysis. The tools usually allow the user to assist and improve the

low-level analysis results, e.g., by specifying what memory area certain memory accesses go to and known

bounds on register values [21].

5 TIMING BY STATIC ANALYSIS 20

5.3 Calculation - Deriving the WCET Estimate

The purpose of the calculation phase is to combine the flow- and timing information derived in the preceding

phases to derive a WCET estimate and the corresponding worst-case execution path(s). For example, in

Figure 1.7 the calculation derives a WCET estimate of 3843 clock cycles. This corresponds to an execution

where each of the nodes A, B, E and F are taken 100 times, while C and D are taken 5 and 95 times respectively.

There are three main categories of calculation methods proposed in the WCET literature: tree-based, path-

based and IPET (Implicit Path Enumeration Technique). The most suitable calculation method depends

on the underlying program representation as well as the characteristics of the derived flow- and timing

information.

In a tree-based calculation, the WCET estimate is generated by a bottom-up traversal of a tree corre-

sponding to a syntactical parse tree of the program [7, 8, 37, 41]. The syntax-tree is a representation of

the program whose nodes describe the structure of the program (e.g., sequences, loops or conditionals) and

whose leaves represent basic blocks. Rules are given for traversing the tree, translating each node in the tree

into an equation that expresses the node timing based on the timing of its child nodes.

Figure 1.8(a) shows an example control-flow graph with timing on the nodes and loop-bound flow in-

formation. Figure 1.8(d) illustrates how a tree-based calculation method would proceed over the graph

according to the program syntax-tree and given transformation rules. Collection of nodes are collapsed into

single nodes, simultaneously deriving a timing for the new node.

In a path-based calculation, the WCET estimate is generated by calculating times for different paths in

parts of a program, to form an overall path with the worst execution time [24, 53, 54]. The defining feature

is that possible execution paths are explicitly represented.

Figure 1.8(b) illustrates how a path-based calculation method would proceed over the graph in Fig-

ure 1.8(a). The loop in the graph is first identified and the longest path within the loop is found. The time

for the longest path is combined with the loop bound flow information to extract a WCET estimate for the

whole program.

A frequently used calculation method is IPET (Implicit Path Enumeration Technique) [17, 28, 36, 45, 58].

Here, the longest path no longer is explicit, but instead implicitly defined. IPET represent the program flow

5 TIMING BY STATIC ANALYSIS 21

�'	�

�����

��

*

�4�4!

$4-45 *�

�

$

!�

�'	�

�����

5-

� �$
�$�
��

������ �,$

��� ��-

��. ��/
��

�� �-

�. �/

��� �-�

�., �/,
�,

�
���

������$

�$
���

#�%
�./
����
����	�
�	�
����
�	��������	

�

$

!�

�'	�

�����

5-

��

&

�0

1

&(

�

&

�0

1

&(

�

$

!�

�'	�

�����

5-

�

���
2����3
*��

��
����
��
�
#�$�"0
�������"6"�*���"7
�
�'���*�+�"0
8"6"8+"7"99"0
8,31

��
����
������
�*���"0"8+
�������"0"8

#�%
4���+���
�
����������	

5�	�
��
����
���6
�

����:��+4�1��"0"���+�"6���1�

��	��$'*�"�+"����"�1�"0
""��$'*�"6"
�'����+�4���1��

�����*�$'*4������"0
""��$'*�"6
""���$'*�"6��������"7"�
�'���*�+�

������	�����	�
��
�� #�%
��

+���
�
����������	

�'	�

�����

��

 (�4�4!4
$4-454

����

��	����
����

	� ��: ���*

�

$

!�

�'	�

�����

5-

��

&

�0

1

&(

�'	�

�����

��0
�4�4�4!
$4-454

��
 ����
��!
�"��
�	���������
'�����"0"+4"'�'	�"0"+

��
 ��������

�	���������
'�����"0"'������
'�"0"'������"6"'
�"0"'��'	�"6"'��
'�"0"'��"0"'��"6"'�!
'�"0"'��"0"'�$

"";";";
'
"0"'-
"6"'5
"0"'
�
'�'	�"0"'��'	�

��
#		$%	��!
�	��������
'�
��+,,

��
����
�"$�����	�
#�$�"0"
�'�'�78"6"'�7)"6
"""""""""""""""'�73"6";;;"6"'
71�"0
""""""""""""0"8,31

#�%
74��
����������	

����

�
"

�
"��

�

� � ! ��

$ - 5

 &���"'����

Figure 1.8: Different calculation methods

and execution times using algebraic and/or logical constraints. Each basic block and/or edge in the basic

block graph is given a time (tentity), and a count variable (xentity), the latter denoting the number of times

that block or edge is executed. The WCET is found by maximising the sum
∑

i∈entities xi ∗ ti, subject to

constraints reflecting the structure of the program and possible flows. The WCET estimate is then derived

using integer linear programming (ILP) or by constraint solving. The result is a worst-case count for each

node and edge, and not an explicit path like in path-based calculation. IPET is usually applied on a whole

program basis, but can also be applied on smaller program parts in a bottom-up fashion [16, 28].

Figure 1.8(c) shows the constraints and WCET formula generated by a IPET-based calculation method

5 TIMING BY STATIC ANALYSIS 22

for the program illustrated in Figure 1.8(a). The start and exit constraints states that the program must be

started and exited once. The structural constraints reflect the fundamentals of program flow, where a basic

block has to be entered the same number of times as it is exited. The loop bound is specified as a constraint

on the number of times node A can be executed. Additional constraints on the execution counts of nodes

can be used to tighten the WCET bound.

5.4 Relation Between Source and Binary

Static WCET analysis has to be performed on the compiled object code of a program, since that is the only

level that actually reveals the actual sequence of machine instructions being executed. However, performing

flow analysis on the object-code level is harder than on source code, since the identity of variables and the

program structure is obscured by the process of compilation.

Ideally, flow analysis should be performed on the source code level, where program flow is easier to divine

than on the compiled code. Analyzing the source code also makes it simpler for the programmer to help the

analysis with annotations. Combining source-code level flow analysis with object-code level timing analysis

requires flow information to be mapped from source-code to object-code.

This mapping process is complicated by the fact that the compiler performs many transformations on the

code during code generation. For example, transformations like unrolling loops, inlining function calls, or

removing unused code all make the relationship between source code and compiled code non-obvious [10, 34].

The pragmatic solution today is to use only low levels of optimization when compiling programs to be

analyzed, relying on debug information in compiler provided symbol tables, and using manual intervention

to resolve tricky cases [30, 58]. Some research tools are attempting to integrate the WCET analysis with the

compiler [19, 23, 24], which gets around the problem and should allow for a more precise analysis. However,

it binds the analysis tightly to a particular compiler.

Note that tools operating on object code are to some extent dependent on the compilers used, since they

need to understand the pecularities of their code generation in order to build a model of the code structure

in the decoding phase, as discussed in Section 7.

6 HYBRID ANALYSIS TECHNIQUES 23

5.5 Analysis Correctness

To guarantee that a static WCET analysis tool derives safe WCET estimates, all parts of a tool must be

proven safe. For the low-level analysis the correctness of the timing model is crucial. Validation of a timing

model is a complex and burdensome work, especially for complex CPUs [12, 40]. Usually, a large number of

test cases are used to compare the model with the actual target hardware, forcing the model to follow the

same path as the execution on the hardware.

The correctness of flow analysis methods are much easier to prove, since the semantics of programming

languages are well defined and the analysis methods used are often well studies in the compiler world. Even

for machine code the semantics of instructions are relatively simple and well defined, but unfortunately this

does not hold for the timing behavior. The calculation part of a WCET tool is usually small and simple,

and thus easy to validate, while functions such as visualization of results (see Section 7) are non-critical and

do not influence the correctness of the tool as such.

5.6 Supporting a New Target Architecture

Compared to other types of programming tools like compilers and functional simulators, a WCET analysis

tool requires much more work to support a new processor, something which is reflected in the number of

processors supported by different tools and the price of the tools.

The main bottleneck is the creation and validation of the CPU timing model [42]. This has led to the

development of hybrid WCET analysis methods (see Section 6), where measurements are used instead of a

static hardware model. Other approaches intended to simplify the porting a WCET tools, is to reuse existing

cycle-accurate simulation models [2, 12, 66] or derive models from VHDL code [60].

6 Hybrid Analysis Techniques

Hybrid analysis techniques use measurements and static analyses in complement to each other. The basic

idea is the following: first, a model of the program is constructed by static analysis of the code. The model

is then annotated with measurement points at suitable places, partitioning the program into a number of

6 HYBRID ANALYSIS TECHNIQUES 24

��*��"��"���������	��"��"����

8�����+
�9����	

4������
�
����	�

������+
����	

5��+�
:
�
�	��;���

���������
	
��

��	����
(�"�����%
�)

�
��������������

�����

���	����	��

*��!����
�	!�

���������	�
���������

����������������������

��*��"��"������	�

.���
�	��;���

�
�	��������	
����
�
�	��;���
����
�

�
�	���
������

Figure 1.9: WCET analysis tool layout

smaller parts for measurement. The program, or smaller parts of the program, is then executed a number of

times and time measurements are performed. For each measured program part, a worst measured execution

time is noted. The measured times are then brought back into the static model and used to deduce a WCET

estimate [2, 63, 66].

Similar to static WCET analysis hybrid method requires that all loops are bounded. These loop bounds

can either be derived using measurements (by keeping track on the largest number of iterations for a loop

observed), through static analysis or by manual annotation.

The main advantage of the hybrid method is that no timing model of the processor needs to be created.

In a sense, the low-level analysis is replaced with structured measurements. Furthermore, traditional test

coverage criteria can be used to show that the program has been throughtly tested.

The main drawback to the method is that there are no guarantees that the obtained WCET estimates

are safe. Timing for program parts are derived using measurements on a subset of all program executions.

Thus, it is hard to guarantee that each program part has encountered its worst case timing. Moreover, it

is possible to add worst case timings for program parts which can never occur together, potentially ruining

the precision.

The user or the tool also has to somehow provide suitable input data to ensure that all program parts are

executed. The method also requires that there exists suitable measuring mechanisms to obtain the timing

for program parts, see Section 4.1.

7 TOOLS FOR WCET ANALYSIS 25

7 Tools for WCET Analysis

During the last couple of years a number of WCET analysis tools have been developed, both research

prototypes and commercial tools. The latter are all research projects that has evolved into commercial

products. Commercial tools include aiT (www.absint.com) and Bound-T (www.tidorum.fi), both static

WCET analysis tools, and Rapitime (www.rapitasystems.com), which is a hybrid analysis tool. For a more

detailed presentation of commercial and research tools, we refer to [64].

The tools differ in the processors supported and the types codes they can analyse. In general, all tools

contain the three analysis phase described in Section 5. Normally, there is also a decoding phase, where

the executable program is read and converted into an internal representation for the analysis, The decoding

phase can be quite complicated depending on the instruction set and the compiler used to generate the code

(see Section 5.4). Most tools also contain some form of visualization of the results, e.g., a program flow

graph where different program parts have been annotated with the number of times they are taken in the

worst case execution.

Most tools allow the user to improve the results and guide the analyses by various forms of manual

annotations. Certain annotations are mandatory, e.g., the specific hardware configuration used, the start

address of the code that should be analyzed, possible values of input data, and bounds for loops which

cannot be determined by the flow analysis. Some annotations are optional, e.g., information on infeasible

paths or the memory area certain memory accesses go to, but may give a tighter WCET estimate.

Some tools also provide other information that can be obtained with a small extra effort, based on the

analysis already made doing the WCET. A typical example is the maximum stack depth a program can use,

which is useful for configuring certain operating systems.

8 Industrial Experience of WCET Analysis Tools

As mentioned above, there are several commercially available WCET analysis tools today. The tools has

been used to analyse software timing in avionics-, space-, and car industry, e.g., aiT has been used during

the development of the software for the fly-by-wire system in Airbus A380 [64]. There are published reports

8 INDUSTRIAL EXPERIENCE OF WCET ANALYSIS TOOLS 26

about industrial [4, 15, 18, 28, 29, 50, 51, 52, 59] and educational use [42] of these tools. The following list

summarizes some of the most important lessons reported:

• Overall, it is possible to apply today’s WCET analysis tools to a variety of industrial systems and

codes. The tools used derived safe WCET estimates in comparasion to measured times and received

positive feedback regarding analysis time, precision and usefulness.

• WCET analysis is today not yet a fully automated ’one-click’ analysis. Manual user interaction,

typically annotations to describe the program flow and bounds on input data, is required to obtain

useful results. This, in turn, requires a detailed understanding the analyzed code and its operating

environment [4, 15, 18, 51].

• A higher degree of automation and support from the tools, e.g., automatic loop bound calculation,

would in most cases have been desirable. The tools used todays are only able to handle a subset of the

loops encountered [4, 29, 48, 50, 52].

• The structure of the code of a system has significant impact on the analyzability of a system. Many

small well-defined tasks scheduled by a strict priority RTOS or a time-triggered schedule is easier to

analyze than monolithic interrupt-driven programs based on an infinite main loop [15, 51, 52].

• Manual annotations can sometimes be burdensome to generate, even when the code is well-structured

and easy to understand, due to the volume of annotations needed. For example, if a C macro contruct

requires an annotation to be analyzed, that macro requires an annotation for each use [52].

• Once a static analysis tool is setup, reanalyzing a system after changes is typically faster than measuring

it. This could potentially save large amounts of time in development [29].

• Code should be written to facilitate timing analysis, by adhering to strict coding rules. Typically, you

want all loops to be statically bounded, input-data dependence minimized, pointer use minimized, and

code structure as simple and straightforward as possible. Such coding style is commonly recommended

for safety-critical and real-time systems programming [22, 31, 55].

9 CHAPTER SUMMARY 27

• Presenting the results in a graphical user interface is very valuable for obtaining a overview of the

analyzed code and to interpret and understand the result of the analysis [4, 15, 18].

• A single WCET bound, covering all possible scenarios, is not always what you want. Sometimes it is

more interesting to have different WCET bounds for different execution modes or system configurations

rather than a single WCET bound. The latter would usually be an overapproximation. In some cases,

it was possible to manually derive a parametrical formula [4, 15, 50], showing how the WCET estimate

depends on some specific system parameters.

• Automatically generated code can be very amenable to WCET analysis, provided the code generator is

designed with predictability and analyzabilty in mind [52]. Generated code can also be hard to analyze,

if predictability and analyzability were not designed into the code generator since code generators can

generate very convoluted and complex code which is hard to understand for both human programmers

and automatic program analyses.

• Not only application-level code is interesting to analyze, but also other code like operating-system

services and interrupt handlers [6, 15, 50].

• The large diversity in processors used in embedded systems hinders the deployment of static WCET

analysis. A tool often has to be ported to the particular processor(s) used in a project, which costs

both time and money [4, 42], see also Section 5.6.

• Measurements and static timing analysis should not be seen as isolated tasks. Instead, they could

complement each other, together giving a better understanding of the system timing and increase the

trust in the resulting timing estimates [15, 67].

9 Chapter Summary

This chapter has dealt with the problem of how to estimate and analyze the execution time of programs.

Knowing the execution-time characteristics of a program is fundamental to the successful design and execu-

tion of a real-time system. For hard real-time systems, reliable WCET estimates are especially important.

REFERENCES 28

A variety of methods are available to performing timing and WCET analysis, ranging from manual

measurements to automated static analyses. The method(s) suitable for a particular application depends in

high degree on its real-time criticality and the availability of tools suited to the particular system.

For the static WCET estimation problem a lot of research investment has been made, and today several

commercial WCET analysis tools are available. Industrial usage of these and other WCET analysis tools

show very promising results in published case studies.

References

[1] H. Aljifri, A. Pons, and M. Tapia. Tighten the computation of worst-case execution-time by detect-

ing feasible paths. In Proc. 19th IEEE International Performance, Computing, and Communications

Conference (IPCCC2000). IEEE, February 2000.

[2] G. Bernat, A. Colin, and S. Petters. pWCET: a tool for probabilistic worst-case execution time anal-

ysis. In Proc. ACM SIGPLAN Workshop on Languages, Compilers and Tools for Embedded Systems

(LCTES’03), 2003.

[3] Adam Betts and Guillem Bernat. Issues using the nexus interface for measurement-based wcet analysis.

In Proc. 5th International Workshop on Worst-Case Execution Time Analysis, (WCET’2005), July

2005.

[4] Susanna Byhlin, Andreas Ermedahl, Jan Gustafsson, and Björn Lisper. Applying static WCET analysis

to automotive communication software. In Proc. 17th Euromicro Conference of Real-Time Systems,

(ECRTS’05), pages 249–258, July 2005.

[5] T. Chen, T. Mitra, A. Roychoudhury, and V. Suhendra. Exploiting branch constraints without exhaus-

tive path enumeration. In Proc. 5th International Workshop on Worst-Case Execution Time Analysis,

(WCET’2005), pages 40–43, July 2005.

[6] A. Colin and I. Puaut. Worst-Case Execution Time Analysis for the RTEMS Real-Time Operating

System. In Proc. 13th Euromicro Conference of Real-Time Systems, (ECRTS’01), June 2001.

REFERENCES 29

[7] Antoine Colin and Guillem Bernat. Scope-tree: a program representation for symbolic worst-case

execution time analysis. In Proc. 14th Euromicro Conference of Real-Time Systems, (ECRTS’02),

pages 50–59, 2002.

[8] Antoine Colin and Isabelle Puaut. Worst case execution time analysis for a processor with branch

prediction. Journal of Real-Time Systems, 18(2/3):249–274, May 2000.

[9] J. Engblom. Why SpecInt95 should not be used to benchmark embedded systems tools. In Proc. ACM

SIGPLAN Workshop on Languages, Compilers and Tools for Embedded Systems (LCTES’99), May

1999.

[10] J. Engblom, P. Altenbernd, and A. Ermedahl. Facilitating worst-case execution times analysis for

optimized code. In Proc. of the 10th Euromicro Workshop of Real-Time Systems, pages 146–153, June

1998.

[11] Jakob Engblom. On hardware and hardware models for embedded real-time systems. In Proc. IEEE

Real-Time Embedded Systems Workshop, held in conjunction with RTSS2001, Dec 2001.

[12] Jakob Engblom. Processor Pipelines and Static Worst-Case Execution Time Analysis. PhD thesis,

Uppsala University, Dept. of Information Technology, Box 337, Uppsala, Sweden, April 2002. ISBN

91-554-5228-0.

[13] Jakob Engblom. Analysis of the execution time unpredictability caused by dynamic branch prediction.

In Proc. 8th IEEE Real-Time/Embedded Technology and Applications Symposium (RTAS’03), May 2003.

[14] Jakob Engblom and Bengt Jonsson. Processor pipelines and their properties for static WCET analysis.

In Proc. 2nd International Workshop on Embedded Systems, (EMSOFT2001), 2002.

[15] Ola Eriksson. Evaluation of static time analysis for CC systems. Master’s thesis, Mälardalen University,

Väster̊as, Sweden, August 2005.

[16] A. Ermedahl, F. Stappert, and J. Engblom. Clustered worst-case execution-time calculation. IEEE

Transaction on Computers, 54(9):1104–1122, Sept 2005.

REFERENCES 30

[17] Andreas Ermedahl. A Modular Tool Architecture for Worst-Case Execution Time Analysis. PhD thesis,

Uppsala University, Dept. of Information Technology, Uppsala University, Sweden, June 2003.

[18] Andreas Ermedahl, Jan Gustafsson, and Björn Lisper. Experiences from industrial WCET analysis case

studies. In Proc. 5th International Workshop on Worst-Case Execution Time Analysis, (WCET’2005),

pages 19–22, July 2005.

[19] Heiko Falk, Paul Lokuciejewski, and Henrik Theiling. Design of a WCET-aware C compiler. In Proc.

6th International Workshop on Worst-Case Execution Time Analysis, (WCET’2006), July 2006.

[20] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing, and

R. Wilhelm. Reliable and precise WCET determination for a real-life processor. In Proc. 1st Interna-

tional Workshop on Embedded Systems, (EMSOFT2000), LNCS 2211, Oct 2001.

[21] C. Ferdinand, R. Heckmann, and H. Theiling. Convenient user annotations for a WCET tool. In Proc.

3rd International Workshop on Worst-Case Execution Time Analysis, (WCET’2003), 2003.

[22] Jack Ganssle. Really real-time systems. In Proc. of the Embedded Systems Conference, Silicon Valley

2006 (ESCSV 2006), April 2006.

[23] Jan Gustafsson, Andreas Ermedahl, and Björn Lisper. Towards a flow analysis for embedded system

C programs. In Proc. 10th IEEE International Workshop on Object-oriented Real-time Dependable

Systems (WORDS 2005), February 2005.

[24] C. Healy, R. Arnold, Frank Müller, David Whalley, and M. Harmon. Bounding pipeline and instruction

cache performance. IEEE Transactions on Computers, 48(1), January 1999.

[25] C. Healy, M. Sjödin, V. Rustagi, D. Whalley, and R. van Engelen. Supporting timing analysis by

automatic bounding of loop iterations. Journal of Real-Time Systems, May 2000.

[26] C. Healy and D. Whalley. Tighter timing predictions by automatic detection and exploitation of

value-dependent constraints. In Proc. 5th IEEE Real-Time Technology and Applications Symposium

(RTAS’99), June 1999.

REFERENCES 31

[27] Peter Hofstee. Power efficient processor architecture and the cell processor. In 11th Symposium on

High-Performance Computing Architecture (HPCA-11), February 2005.

[28] N. Holsti, T. L̊angbacka, and S. Saarinen. Worst-case execution-time analysis for digital signal proces-

sors. In Proc. EUSIPCO 2000 Conference (X European Signal Processing Conference), 2000.

[29] Niklas Holsti, T. L̊angbacka, and S. Saarinen. Using a worst-case execution-time tool for real-time

verification of the DEBIE software. In Proc. DASIA 2000 Conference (Data Systems in Aerospace

2000, ESA SP-457), September 2000.

[30] Niklas Holsti and S. Saarinen. Status of the Bound-T WCET tool. In Proc. 2nd International Workshop

on Worst-Case Execution Time Analysis, (WCET’2002), 2002.

[31] Gerald Holzmann. The power of 10: Rules for developing safety-critical code. IEEE Computer, June

2006.

[32] Christopher J. Hughes, Praful Kaul, Sarita V. Adve, Rohit Jain, Chanik Park, and Jayanth Srinivasan.

Variability in the execution of multimedia applications and implications for architecture. In Proc. 28th

International Symposium on Computer Architecture (ISCA 2001). ACM Press, July 2001.

[33] D. Kebbal and P. Sainrat. Combining symbolic execution and path enumeration in worst-case exe-

cution time analysis. In Proc. 6th International Workshop on Worst-Case Execution Time Analysis,

(WCET’2006), July 2006.

[34] Raimund Kirner. Extending Optimising Compilation to Support Worst-Case Execution Time Analysis.

PhD thesis, Technische Universität Wien, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, May 2003.

[35] Xianfeng Li, Abhik Roychoudhury, and Tulika Mitra. Modeling out-of-order processors for software

timing analysis. In Proc. 25th IEEE Real-Time Systems Symposium (RTSS’04), pages 92–103, December

2004.

[36] Y-T. S. Li and S. Malik. Performance analysis of embedded software using implicit path enumeration.

In Proc. 32:nd Design Automation Conference, pages 456–461, 1995.

REFERENCES 32

[37] S.-S. Lim, Y. H. Bae, C. T. Jang, B.-D. Rhee, S. L. Min, C. Y. Park, H. Shin, K. Park, and C. S. Ki. An

accurate worst-case timing analysis for RISC processors. IEEE Transactions on Software Engineering,

21(7):593–604, Jul 1995.

[38] Y. A. Liu and G. Gomez. Automatic accurate time-bound analysis for high-level languages. In Proc.

ACM SIGPLAN Workshop on Languages, Compilers and Tools for Embedded Systems (LCTES’98),

pages 31–40, June 1998.

[39] Thomas Lundqvist. A WCET Analysis Method for Pipelined Microprocessors with Cache Memories.

PhD thesis, Chalmers University of Technology, Göteborg, Sweden, June 2002.

[40] S. Montán. Validation of Cycle-Accurate CPU Simulator against Actual Hardware. Master’s thesis,

Dept. of Information Technology, Uppsala University, 2000. Technical Report 2001-007.

[41] Chang Yun Park and Alan C. Shaw. Experiments with a program timing tool based on a source-level

timing schema. In Proc. 11th IEEE Real-Time Systems Symposium (RTSS’90), pages 72–81, Dec 1990.

[42] Samuel Petersson, Andreas Ermedahl, Anders Pettersson, Daniel Sundmark, and Niklas Holsti. Using a

WCET analysis tool in real-time systems education. In Proc. 5th International Workshop on Worst-Case

Execution Time Analysis, (WCET’2005), Palma de Mallorca, Spain, July 2005.

[43] I. Puaut and D. Decotigny. Low-complexity algorithms for static cache locking in multitasking hard

real-time systems. In Proc. 23rd IEEE Real-Time Systems Symposium (RTSS’02), 2002.

[44] Peter Puschner. The single-path approach towards WCET-analysable software. In Proc. IEEE Inter-

national Conference on Industrial Technology, pages 699–704, Dec. 2003.

[45] Peter Puschner and Anton Schedl. Computing maximum task execution times – a graph-based approach.

Journal of Real-Time Systems, 13(1):67–91, July 1997.

[46] Jan Reineke, Björn Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia Polian, Jochen Eisinger, and

Bernd Becker. A definition and classification of timing anomalies. In Proc. 6th International Workshop

on Worst-Case Execution Time Analysis, (WCET’2006), July 2006.

REFERENCES 33

[47] Christine Rochange and Pascal Sainrat. A time-predictable execution mode for superscalar pipelines

with instruction prescheduling. In Proceedings of the 2nd conference on Computing frontiers, May 2005.

[48] M. Rodriguez, N. Silva, J. Esteves, L. Henriques, D. Costa, N. Holsti, and K. Hjortnaes. Challenges in

calculating the WCET of a complex on-board satellite application. In Proc. 3rd International Workshop

on Worst-Case Execution Time Analysis, (WCET’2003), 2003.

[49] C. Sandberg. Inspection of industrial code for syntactical loop analysis. In Proc. 4th International

Workshop on Worst-Case Execution Time Analysis, (WCET’2004), June 2004.

[50] D. Sandell, A. Ermedahl, J. Gustafsson, and B. Lisper. Static timing analysis of real-time operating

system code. In Proc. 1st International Symposium on Leveraging Applications of Formal Methods

(ISOLA’04), October 2004.

[51] Daniel Sehlberg, Andreas Ermedahl, Jan Gustafsson, Björn Lisper, and Steffen Wiegratz. Static WCET

analysis of real-time task-oriented code in vehicle control systems. In Proc. 2nd International Symposium

on Leveraging Applications of Formal Methods (ISOLA’06), November 2006.

[52] Jean Souyris, Erwan Le Pavec, Guillaume Himbert, Victor Jegu, Guillaume Borios, and Reinhold

Heckmann. Computing the worst case execution time of an avionics program by abstract interpretation.

In Proc. 5th International Workshop on Worst-Case Execution Time Analysis, (WCET’2005), July

2005.

[53] Friedhelm Stappert and Peter Altenbernd. Complete worst-case execution time analysis of straight-line

hard real-time programs. Journal of Systems Architecture, 46(4):339–355, 2000.

[54] Friedhelm Stappert, Andreas Ermedahl, and Jakob Engblom. Efficient longest executable path search for

programs with complex flows and pipeline effects. In Proc. 4th International Conference on Compilers,

Architecture, and Synthesis for Embedded Systems, (CASES’01), November 2001.

[55] David B. Stewart. Twenty-five most common mistakes with real-time software development. In Proc.

of the Embedded Systems Conference, San Francisco 2001 (ESCSF 2001), April 2001.

REFERENCES 34

[56] David B. Stewart. Measuring execution time and real-time performance. In Proc. of the Embedded

Systems Conference, San Francisco 2004 (ESCSF 2004), March 2004.

[57] David B. Stewart. Twenty-five most common mistakes with real-time software development. In Proc.

of the Embedded Systems Conference, Silicon Valley 2006 (ESCSV 2006), April 2006.

[58] S. Thesing. Safe and Precise WCET Determination by Abstract Interpretation of Pipeline Models. PhD

thesis, Saarland University, 2004.

[59] S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona, M. Langenbach, R. Wilhelm, and C. Ferdi-

nand. An abstract interpretation-based timing validation of hard real-time avionics software. In Proc.

of the IEEE International Conference on Dependable Systems and Networks (DSN-2003), June 2003.

[60] Stephan Thesing. Modeling a system controller for timing analysis. In Proc. 6th International Conference

on Embedded Software, (EMSOFT2006), October 2006.

[61] Xavier Vera, Björn Lisper, and Jingling Xue. Data cache locking for higher program predictability.

In Proc. International Conference on Measurement and Modeling of Computer Systems (SIGMET-

RICS’03), pages 272–282, San Diego, CA, June 2003. ACM Press.

[62] Lars Wehmeyer and Peter Marwedel. Influence of memory hierarchies on predictability for time con-

strained embedded software. In Proc. Design, Automation and Test in European Conference and Exhi-

bition (DATE’05), March 2005.

[63] Ingomar Wenzel, Bernhard Rieder, Raimund Kirner, and Peter P. Puschner. Automatic timing model

generation by CFG partitioning and model checking. In Proc. Design, Automation and Test in European

Conference and Exhibition (DATE’05), volume 1, pages 606–611, 2005.

[64] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David Whalley,

Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut,

Peter Puschner, Jan Staschulat, and Per Stenström. The worst-case execution time problem — overview

of methods and survey of tools. Submitted to ACM Transactions on Programming Languages and

Systems, 2006.

REFERENCES 35

[65] F. Wolf and R. Ernst. Execution cost interval refinement in static software analysis. Journal of Systems

Architecture, The EUROMICRO Journal, Special Issue on Modern Methods and Tools in Digital System

Design, 47(3-4):339–356, Apr 2001.

[66] F. Wolf, J. Kruse, and R. Ernst. Timing and power measurement in static software analysis. Micro-

electronics Journal, Special Issue on Design, Modeling and Simulation in Microelectronics and MEMS,

6:91–100, 2002.

[67] Yina Zhang. Evaluation of methods for dynamic time analysis for CC systems AB. Master’s thesis,

Mälardalen University, Väster̊as, Sweden, August 2005.

