
Allocating Hard Real Time Tasks †
(An NP-Hard Problem Made Easy)

Ken Tindell
Alan Burns

Andy Wellings

Real Time Systems Research Group
Department of Computer Science

University of York
England

email: ken@minster.york.ac.uk

ABSTRACT

A distributed hard real time system can be composed from a number of
communicating tasks. One of the difficulties with building such systems is the
problem of where to place the tasks. In general there are P T ways of allocating T
tasks to P processors, and the problem of finding an optimal feasible allocation
(where all tasks meet physical and timing constraints) is known to be NP-Hard.
This paper describes an approach to solving the task allocation problem using a
technique known as simulated annealing. It also defines a distributed hard real-
time architecture and presents new analysis which enables timing requirements to
be guaranteed.

1. INTRODUCTION

Building real-time systems on distributed architectures presents engineers with a number of
challenging problems. One issue is that of scheduling the communication media, another concerns
the allocation of software components to the available processing resources. Distributed systems
typically consist of a mixture of periodic and sporadic tasks, each with an associated deadline and
possibly precedence constraints. Failure to meet the deadlines of critical tasks may lead to a
catastrophic failure of the system, and consequently off-line analysis of allocation and processor
scheduling is required to guarantee task deadlines.

In general, the three activities of task allocation, processor scheduling and network scheduling are
all NP-hard problems [5]. This has led to a view that they should be considered separately.
Unfortunately, it is often not possible to obtain optimal solutions (or even feasible solutions) if the
three activities are treated in isolation. For example, allocating a task T to a processor P will
increase the computational load on P , but may reduce the load on the communications media (if T
hhhhhhhhhhhhhhhhhh
† This work was supported in part by British Aerospace (Commercial Aircraft) Ltd, and by the UK Department of Trade
and Industry

- 2 -

communicates with tasks on P), and hence the response time of the communications media is
reduced, allowing communications deadlines elsewhere in the system to be met. The tradeoffs can
become very complex as the hard real time architecture becomes more expressive; a simple and
scalable approach is required.

Previous approaches to solving the task allocation problem have mostly concentrated on graph
theoretic algorithms (for example [6] and[7]) or heuristics (for example [3] and[9]). Most have
tried to maximise system throughput (i.e. minimise the computational and communication resource
requirements for tasks in the system), often by reducing ‘bottlenecks’, resulting in allocations
which may or may not be schedulable. However, these approaches do not take a global view; they
rely on the observation that fast systems (i.e. ones which maximise system throughput) usually
equate to schedulable systems. Of course, the major requirement for a hard real time system is to
meet deadlines, and most previous allocation approaches do not address this — usually a post-
allocation phase is needed to determine the schedulability of a given allocation. For example, the
current MARS [8] approach separates the allocation and scheduling problems, solving each in
turn, which can lead to sub-optimal solutions. Indeed, when looking for allocations which are
merely feasible (i.e. all hard constraints — such as guaranteed deadlines — are met) the
partitioned approach can fail to find solutions where an algorithm taking the global view can
succeed.

One approach that does attempt to address systematically the global allocation problem is the work
of Ramamritham [17], where the allocation algorithm directly addresses the schedulability of the
tasks, and hence takes a global view. In Ramamritham’s architecture multiple processors are
connected by a shared broadcast bus which operates a TDMA (time division multiple access)
protocol. The schedulability of tasks in the system is determined by evaluating fixed processor and
bus schedules. The tasks are allocated to processors according to a set of heuristics which consist
of simple rules. For example, one rule moves tasks which communicate to the same processor (so
that communication can take place without using the bus). Another rule moves tasks away from
unschedulable processors. A problem with heuristics is that complex tradeoffs can occur which the
designer must foresee, and the resolution of conflicts (such as in the two rules above) is not trivial.
Also, schedule evaluation can be computationally intensive since a schedule must be evaluated
over the least common multiple (lcm) of the task periods, and this may equal the multiple of the
task periods.

In summary, the general allocation problem has yet to be adequately addressed. Not only must an
allocation satisfy certain hard constraints, but it should also aim to optimise some aspect of the
system model. In addition, a proposed solution to the allocation problem must be scalable and be
able to encompass a variety of complex system architectures (perhaps even choosing between
architectures as part of the allocation process).

As indicated earlier, task allocation can be viewed as a global optimisation problem. It is similar in
nature to other problems found in computer science, such as the travelling salesman problem.
These problems have been successfully solved by the global optimisation technique known as
simulated annealing [10]. Simulated annealing is not a heuristic algorithm — it is sufficient to
state what makes a good solution not how to get one, and therefore does not suffer the
disadvantages of applying inadequate heuristics. This paper describes how the simulated
annealing algorithm can be used to solve the task allocation problem. We believe the algorithm is
scalable and able to encompass complex hard real time architectures.

The next section describes the algorithm. In order to focus the application of the algorithm more
clearly Section 3 gives a distributed hard real time architecture and presents an analysis of the

-
3

-

architecture.
T

he
section

also
clearly

states
the

task
allocation

problem
for

the
exam

ple
architecture.Section

4
show

s
how

the
sim

ulated
annealing

algorithm
is

applied
to

solving
the

task
allocation

problem
.

Section
5

presents
the

results
of

im
plem

enting
the

algorithm
,

and
Section

6
draw

s
conclusions

and
indicates

how
further

w
ork

is
using

the
sim

ulated
annealing

algorithm
.

A
ppendix

1
gives

a
large

task
and

processor
setand

show
s

the
results

of
applying

the
algorithm

.

2.
T

H
E

A
L

G
O

R
IT

H
M

Sim
ulated

annealing
[16,10,1]

is
a

global
optim

isation
technique,

w
hich

attem
pts

to
find

the
low

estpoint
in

an
energy

landscape.T
he

technique
w

as
derived

from
observations

of
how

slow
ly

cooled
m

olten
m

etal
can

result
in

a
regular

crystalline
structure.

T
he

distinctive
feature

of
the

algorithm
is

thatitincorporates
random

jum
ps

to
potentialnew

solutions.T
his

ability
is

controlled
and

reduced
as

the
algorithm

progresses.

In
order

to
describe

the
algorithm

som
e

definitions
are

needed.
T

he
set

of
all

possible
allocations

for
a

given
setof

tasks
and

processors
is

called
the

problem
space.A

pointin
the

problem
space

is
a

m
apping

of
tasks

to
processors.

T
he

neighbour
space

of
a

point
is

the
set

of
all

points
that

are
reachable

by
m

oving
any

single
task

to
any

other
processor.

T
he

energy
of

a
pointis

a
m

easure
of

the
suitability

of
the

allocation
represented

by
thatpoint

(poor
allocations

are
high

energy
points).

T
he

energy
function,

w
ith

param
eters,

determ
ines

the
shape

of
the

problem
space

—
it

can
be

visualised
as

a
rugged

landscape,
w

ith
deep

valleys
representing

good
solutions,

and
high

peaks
representing

poor
or

infeasible
ones.

T
he

allocation
problem

is
that

of
finding

the
low

est
energy

pointin
the

problem
space.

A
random

starting
pointis

chosen,and
the

energy,E
s ,evaluated.A

random
pointin

the
neighbour

space
is

then
chosen,

and
the

energy,
E

n ,
evaluated.

T
his

point
becom

es
the

new
starting

point
if

either
E

n
≤

E
s ,or

if:

e
x

≥
random

(0,1)

W
here

x
=

C

E
s

−
E

n
hhhhhhhh

C
is

the
controlvariable

and
‘random

’
is

a
uniform

random
num

ber
generator

T
he

control
variable

C
is

analogous
to

the
tem

perature
factor

in
a

therm
odynam

ic
system

.D
uring

the
annealing

process
C

is
slow

ly
reduced

(‘cooling’
the

system
),m

aking
higher

energy
jum

ps
less

likely.
E

ventually,
the

system
‘freezes’

into
a

low
energy

state.
T

he
structure

of
the

algorithm
is

sketched
below

:

-
4

-

choose
random

starting
pointP

0

choose
starting

tem
perature

C
0

repeatrepeatE
P

:=
E

nergy
atpointP

n

choose
T

,a
neighbour

of
P

n

E
T

:=
E

nergy
atpointT

if
E

T
<

E
P

then
P

n
+

1 =
T

else

x
:=

C
n

E
P

−
E

T
hhhhhhhh

if
e

x
≥

random
(0,1)

then
P

n
+

1
:=

T
else

P
n

+
1

:=
P

n

fi
fi

untiltherm
alequilibrium

C
n

+
1 =

f
(C

n)
untilsom

e
stopping

criterion

A
s

can
be

seen
from

above,the
algorithm

requires
a

neighbour
function,an

energy
function,and

a
cooling

function.

T
he

energy
function

is
the

heartof
the

allocation
algorithm

.Itshapes
the

energy
landscape,w

hich
affects

how
the

annealing
algorithm

reaches
a

solution.
A

n
exam

ple
energy

function
for

the
architecture

given
in

the
nextsection

is
described

in
Section

4.

T
he

initial
tem

perature,
C

0 ,
is

chosen
so

that
virtually

all
proposed

jum
ps

are
taken,

and
this

tem
perature

can
be

chosen
by

the
algorithm

:
K

irkpatrick
et

al
[10]

pick
a

low
tem

perature
and

repeatedly
double

it
until

the
acceptance

ratio
(the

num
ber

of
accepted

jum
ps

over
the

num
ber

of
proposed

jum
ps)

is
near

to
100%

.
L

aarhoven
and

A
arts

[11]
take

a
m

ore
m

athem
atical

approach
and

produce
a

recursive
equation

w
hich

rapidly
converges

to
the

ideal
starting

tem
perature.

T
he

tem
perature

decrease
function,

f
(C

n),
is

usually
a

sim
ple

m
ultiplication

by
α

,
w

here
0≤α

<
1.

A
gain,

L
aarhoven

and
A

arts
propose

a
m

ore
com

plex
function,

w
hich

dynam
ically

changes
the

rate
depending

on
the

perform
ance

of
the

algorithm
.

A
s

can
be

seen
from

the
algorithm

description
above,

the
tem

perature
rem

ains
the

sam
e

over
a

num
ber

of
trials

until
equilibrium

is
reached.T

hese
trials

can
be

m
odelled

as
a

m
arkov

chain,and
an

equilibrium
condition

obtained.
K

irkpatrick
et

al
use

a
sim

ple
condition:

the
num

ber
of

dow
nw

ard
(energy

decreasing)
jum

ps
are

counted
and

equilibrium
is

said
to

be
achieved

w
hen

the
countexceeds

a
threshold.L

aarhoven
and

A
arts

analyse
the

algorithm
m

athem
atically

and
propose

a
m

ore
com

plex
condition.

B
oth

approaches
lead

to
potentially

infinite
chains

(especially
at

low
tem

peratures)
and

so
an

upper
bound

on
the

num
ber

of
trials

is
enforced

(usually
about

four
tim

es
the

size
of

the
neighbour

space).

T
he

stopping
criterion

can
also

be
determ

ined
autom

atically,and
a

sim
ple

approach
is

to
term

inate
w

hen
no

upw
ard

or
dow

nw
ard

jum
ps

have
been

taken
overa

num
ber

of
successive

chains.

A
plot

of
E

nergy
against

T
em

perature
for

a
typical

problem
is

show
n

below
(the

results
w

ere

-
5

-

produced
from

an
actualrun

of
a

task
allocation

program
).T

em
perature

is
plotted

on
a

log
scale

so
the

scale
can

also
represent

linear
tim

e
flow

ing
from

right
to

left.
T

he
tem

perature
starts

to
decrease

rapidly
at

about
10.0

—
this

tem
perature

is
the

‘freezing
point’

of
the

system
in

this
exam

ple,
and

cooling
m

ust
be

slow
enough

to
prevent

the
system

being
trapped

in
a

local
m

inim
um

,so
the

cooling
rate

α
is

usually
betw

een
0.95

and
0.99.

0.01
0.1

1
10

100

5 10 20 50

100

E
nergy

T
em

perature

g g ggg gg gg g gg gg gg ggg g ggg g gg g g gg gg gg g gg gggg gg ggg gggg gg gg g ggg g g g gg gg ggg ggg gg g g ggg gg gg gg ggg gg gg gg ggg gggg
ggg ggggg g

ggggg
g gggg ggggg

ggggg
ggg ggg

g gggggggg
gggggg

gggggg
gggggg

gggggg
gg

Figure
1

3.
A

D
IST

R
IB

U
T

E
D

H
A

R
D

R
E

A
L

T
IM

E
A

R
C

H
IT

E
C

T
U

R
E

In
order

to
illustrate

the
approach,

this
section

describes
an

exam
ple

distributed
hard

real
tim

e
architecture.A

lthough
this

architecture
is

sim
ple

w
e

believe
thatsim

ulated
annealing

can
easily

be
applied

to
m

ore
com

plex
architectures

(w
ork

at
the

R
eal

T
im

e
System

s
R

esearch
G

roup
at

Y
ork

has
already

applied
sim

ulated
annealing

to
the

problem
of

allocating
and

scheduling
precedence

constrained
hard

realtim
e

tasks).

B
roadcastbus

betw
een

processors

C
PU

s

T
oken

passed

Figure
2:Physicalarchitecture

Figure
2

show
s

the
physical

architecture
—

a
num

ber
of

processors
are

connected
to

a
broadcast

bus,each
processor

having
a

fixed
processing

speed
and

m
em

ory
capacity.A

num
ber

of
hard

real
tim

e
periodic

tasks
execute

on
each

processor.E
very

period
a

task
executes

a
piece

of
code

w
ithin

a
bounded

num
ber

of
C

PU
cycles,

and
com

m
unicates

the
results

of
the

com
putation

by
sending

m
essages

to
other

tasks.E
ach

task
has

a
fixed

m
em

ory
requirem

ent
(there

is
no

run-tim
e

m
em

ory
contention).

In
each

period
a

task
m

ay
send

a
bounded

num
ber

of
m

essages
of

a
bounded

size
to

other
tasks.

A
m

essage
sentbetw

een
tw

o
tasks

on
the

sam
e

processor
is

assum
ed

to
take

zero
tim

e
to

arrive.
It

is
also

assum
ed

that
m

essage
arrivals

cause
no

overhead
at

the
receiving

processor

-
6

-

(these
tw

o
assum

ptions
have

been
rem

oved
in

currentw
ork,butthe

analysis
is

beyond
the

scope
of

this
paper).

For
this

sim
ple

architecture
a

distributed
version

of
the

rate
m

onotonic
algorithm

is
required

—
a

m
essage

sentfrom
a

task
arrives

atthe
destination

task
by

the
end

of
the

period
of

the
sending

task
(just

as
w

ith
a

single
processor

rate
m

onotonic
system

the
results

of
com

putation
are

m
ade

available
by

the
end

of
the

period
of

the
task).

Schedulability
analysis

for
distributed

rate
m

onotonic
scheduling

is
given

below
:

SC
H

E
D

U
L

A
B

IL
IT

Y
A

N
A

L
Y

SIS

T
o

im
plem

entdistributed
rate

m
onotonic

scheduling
the

results
of

a
task

m
ustbe

m
ade

available
to

the
destination

tasks
by

the
end

of
the

period
of

the
sending

task.If
the

source
and

destination
tasks

are
located

on
different

processors
then

the
transm

ission
tim

e
for

m
essages

containing
the

results
m

ustbe
allow

ed
for

(Figure
3).

queuing
m

essages

D
eadline

for

netw
ork

on
the

broadcastbus

execution
tim

e

m
essages

......

for
transm

ission

D
eadline

for

W
orst-case

T
ask

Period

queueing
local

............

delay

....
. . . .

....

Figure
3

T
he

m
essages

m
ustbe

guaranteed
to

arrive
w

ithin
the

tim
e

allow
ed

(hence
a

suitable
bus

protocol
is

required).T
o

guarantee
thata

task
produces

the
results

sufficiently
early

the
task

m
ustexecute

to
a

specified
deadline.

C
urrent

rate
m

onotonic
scheduling

(R
M

S)
theory

[14,12]
assum

es
that

the
deadline

of
a

task
is

equal
to

the
period

of
the

task.
A

s
can

be
seen

from
Figure

3
w

e
need

schedulability
analysis

w
here

the
deadline

of
a

task
can

be
less

than
the

period
of

a
task.D

eadline
m

onotonic
scheduling

(D
M

S)
[13]

is
a

static
priority

scheduling
approach

(like
R

M
S)

w
here

the
priority

of
a

task
is

assigned
according

to
the

deadline
of

the
task

(a
shortdeadline

results
in

a
high

priority).
A

lthough
L

eung
and

W
hitehead

[13]
proved

that
the

deadline
m

onotonic
scheduling

approach
is

optim
al

they
did

not
provide

a
schedulability

test.
A

schedulability
test

has
recently

been
derived

by
A

udsley
et

al
[2].

T
he

test
takes

the
follow

ing
form

:
each

of
n

tasks
m

ust
com

plete
the

execution
of

theircode
(in

tim
e

C
)

before
the

deadline
D

,and
hence:

∀
i,1≤i≤n

C
i +

Ii ≤
D

i
(1)

- 7 -

Where:

n The number of tasks on the processor

Ci The bounded (worst-case) execution time of task i .

Di The deadline of task i , where Di ≤ Ti

Ti The period of task i

Ii The interference due to tasks with a higher priority preempting task i , given by:

Ii =
j =1
Σ
i −1 R

J
J Tj

Dihhh
H
J
J
Cj (2)

Tasks are ordered by priority (task 1 has a higher priority than task 2), and priorities are assigned
by deadline, such that ∀i <j Di ≤ Dj .

The test is sufficient — if Equation 1 is true then the task set is schedulable. The deadlines of each
of the tasks must be determined before the test can be applied; for a task sending only local
messages we have:

Di = Ti

For a task which sends a message to tasks on other processors we have:

Di = Ti − N

Where N is the maximum delay in sending a message across the bus. More precisely, the delay is
the time taken between the message being queued at the sending processor and arriving at the
destination processor, and this time must be bounded by using an appropriate protocol. Both
MARS and Ramamritham use a statically scheduled TDMA protocol. In this paper we propose a
token passing protocol which bounds message delivery, but allows spare bus bandwidth to be used
for soft real time messages in a flexible manner.

THE TOKEN PROTOCOL

A processor is only allowed to transmit on the bus if it holds a token, and can only hold the token
for a bounded amount of time. After this time, or when the processor has no more data to send, the
token is passed on to the next processor in a logical ring. The token holding time at each processor
is large enough to guarantee that all messages in a queue on the processor can be sent the next time
the token arrives at the processor. Assuming that there is a critical message instant (i.e. all tasks
queue all messages simultaneously) the token holding time for processor p , is given by:

THTp =
S

i = 1
Σ

n (p)
Mi , p

R
J
J Ti , p

TRThhhhh
H
J
Jhhhhhhhhhhhhhhhh (3)

Where:

n (p) Number of tasks on processor p

Mi , p Total size of messages sent on the bus from the i th task residing on processor p

Ti , p Period of the i th task on processor p

TRT Token rotation time for the bus

- 8 -

S Speed of the bus

The token rotation time (TRT) is the maximum time taken between successive token arrivals at a
processor. Any message queued is guaranteed to arrive at the destination processor within the
TRT, and messages can therefore be queued in FIFO order. The TRT is found by summing all the
token holding times (plus a small overhead per processor to transmit the token). Thus:

TRT =
j = 1
Σ
P

(THTj + τ) (4)

P Number of processors in the system

τ Time taken to transmit the token

Equations 3 and 4 are mutually dependent and a solution can be obtain by iterating to a fixed point.
Alternatively, the solution can be found quickly by observing that TRT << Ti , p if all tasks are
schedulable. So:

R
J
J Ti , p

TRThhhhh
H
J
J

= 1

∴ THTp =
i = 1
Σ

n (p)

S

Mi , phhhhh

`

In summary, using the token protocol analysis and the schedulability test presented earlier the
schedulability of tasks in a given allocation can be determined.

However, there are other hard constraints on a feasible allocation for this architecture:

g Some tasks can only reside on a subset of the available processors. For example, a task
monitoring a sensor or controlling an actuator must reside on a processor directly connected
to the physical hardware. Similarly, the processors may be heterogeneous and executable
task images of a certain type can only be run on a processor of that type.

g Some tasks may be replicated for fault tolerance and therefore cannot be allocated to the
same processor.

g The memory usage of a processor cannot exceed the fixed capacity.

4. APPLYING THE ALGORITHM

This section describes the application of the simulated annealing algorithm to the task allocation
problem for the example hard real time architecture given in the previous section. It should be
noted that the neighbour and energy functions presented here are not the only possible functions
but are simple ones which have been found to work well in practice.

The neighbour function is simple: choose a random task and move it to a randomly chosen
processor. However, better allocations can be obtained if the ‘degree of freedom’ of the system is
increased [1]. For example, a situation can occur where two processors A and B are heavily
loaded and contain tasks X and Y respectively. A better point can be obtained by swapping X and
Y. However, a move of X to B followed by another move of Y to A is unlikely to occur because
the first move would result in a high energy point (one of the processors becomes unschedulable).
If the neighbour function directly implements task swaps then the jump can take place. This can be

- 9 -

likened to a catalyst in a chemical reaction which allows the energy barrier to a viable reaction to
be ‘tunnelled’.

The energy function is more complex, and has to penalise the following characteristics of an
allocation:

(i) Tasks allocated to the wrong processors

(ii) Replicas allocated to the same processor

(iii) Processors with a memory utilisations > 100%

(iv) Tasks which are not guaranteed to meet their deadlines

These are hard constraints (an allocation with two unschedulable tasks is just as infeasible as an
allocation with a single unschedulable task). However, a measure of the ‘badness’ of an allocation
must be given, since if all infeasible allocations were given the same energy there would be no
path in the energy landscape to follow to a valley where an acceptable allocation might be found.

Characteristic (i) is penalised by returning an energy proportional to the number of misallocated
tasks. A short cut can be made by ensuring the neighbour function never chooses an allocation
where a task is misallocated — each task has a set of acceptable processors and only processors
from this set are chosen.

Characteristic (ii) is penalised by returning an energy component which is a function of the number
of replicas on the same processor:

Ereplica =
p = 1
Σ
P

i = 1
Σ

n (p)

j = 1, j ≠i
Σ

n (p)
replica (i ,j) (5)

Where replica (i ,j) returns 1 if i is a replica of j , and zero otherwise.

Characteristic (iii) is penalised by returning an energy component proportional to the memory
usage in excess of the capacity of each processor:

Emem =
p =1
Σ
P

max[0, mu (p) − mc (p)] (6)

Where:

mu (p) The memory used on processor p

mc (p) The memory capacity of processor p

Characteristic (iv) can be penalised by returning an energy proportional to the overrun on each task
missing its deadline:

Esched =
p =1
Σ
P

i =1
Σ

n (p)
max[0, Ci , p + Ii , p − Di , p] (7)

Where:

n (p) Number of tasks on processor p

Di , p Deadline of i th task on processor p (where D = T −TRT for a task sending bus messages,
and D = T for a task sending only local messages)

Ci , p Worst-case execution time of i th task on processor p

Ii , p Interference for i th task on processor p (see Equation 2)

- 10 -

There may be many feasible allocations, and some way of distinguishing between these would be
useful. In this paper the feasible allocation with the lowest bus utilisation is preferred (since more
soft real time messages could meet their deadlines with a lower bus utilisation). Therefore another
energy component, Ebus , is needed, which returns an energy proportional to the bus utilisation.
The complete energy, E , is given by:

E = k 1Ereplica + k 2Emem + k 3Esched + k 4Ebus

The k weightings allow the prioritisation of the hard constraint components, and balance out the
hard constraint components so that the range of values returned by each are similar.

The Ebus component penalises allocations which violate a soft constraint, and care should be taken
to ensure that there is no tradeoff between hard and soft constraints. For example, a situation might
arise where the total energy for an infeasible but low bus utilisation allocation is lower than a
feasible allocation with a higher bus utilisation. Normally, the algorithm would return the
infeasible allocation as the better, and therefore it must be changed to ensure that this does not
occur. The anneal step is changed to include two rules:

(1) A jump from an infeasible to a feasible solution always occurs (even if the feasible solution
has a higher energy)

(2) A jump from a feasible to an infeasible solution of lower energy may occur, but with a
probability which decreases as the temperature decreases.

IMPLEMENTATION CONSIDERATIONS

During the execution of the simulated annealing algorithm the energy function is invoked many
thousands of times, and a considerable reduction in the run time of the algorithm can be made if
the energy function is evaluated quickly. With the neighbour function described earlier the energy
for a neighbouring point can be obtained quickly from the energy of the current point by
computing the differences in energy resulting from the change after applying the neighbour
function. To illustrate this consider the energy component Emem (See Equation 6). The neighbour
function moves a task T from processor Pold to Pnew . When T moves from Pold to Pnew the
memory usage of all other processors in the system remains unaffected, and hence the memory
penalty due to these other processors remains the same (and need not be recalculated). The new
memory penalty can be calculated by removing the penalty due to Pold and Pnew before T is
moved, and adding the penalty due to Pold and Pnew after T has moved.

Hence, and from Equation 6, the components of the memory penalty due to Pold and Pnew in the
neighbour point, Fmem

neigh, can be calculated. The penalty Fmem
current for the current point due to Pold

and Pnew is already known, and so the change in Emem due to the move, ∆Emem , can be
determined:

∆Emem = Fmem
neigh − Fmem

current

Emem
neigh = Emem

current + ∆Emem

Where:

Emem
neigh The value of Emem for the neighbour point

As can be seen from above, the evaluation of ∆Emem has algorithmic complexity O (1), whereas
the evaluation of Emem has algorithmic complexity O (n) — the computation of Emem

neigh is much

-
11

-

faster
using

∆
E

m
em

.
T

he
energy

com
ponents

E
replica

and
E

bus
can

be
evaluated

for
the

neighbour
pointusing

appropriate
∆

E
functions

form
ulated

in
a

sim
ilarw

ay
to

∆
E

m
em

.

H
ow

ever,the
form

ulation
of∆

E
sched

is
m

ore
com

plex
and

the
follow

ing
points

m
ustbe

noted:

g
W

hen
task

T
m

oves
from

P
old

to
P

new
the

interference
for

T
m

ustbe
recalculated.

g
T

he
interference

due
to

T
on

low
erpriority

tasks
located

on
P

old
m

ustbe
rem

oved.

g
T

he
interference

due
to

T
on

low
erpriority

tasks
located

on
P

new
m

ustbe
added.

g
T

he
m

ovem
ent

of
T

m
ay

affectthe
utilisation

of
the

bus,changing
the

T
R

T
.T

his
w

illaffect
the

deadlines
of

all
tasks

w
hich

send
m

essages
on

the
bus

and
m

ay
change

the
priority

ordering
of

tasks
in

the
system

,and
hence

interferences
m

ustbe
recalculated.

g
T

he
m

ovem
ent

of
T

aw
ay

from
tasks

on
P

old
w

hich
com

m
unicate

w
ith

T
and

to
tasks

on
P

new
w

hich
com

m
unicate

w
ith

T
m

ay
change

the
deadlines

of
such

tasks
and

hence
the

relative
priorities

and
interferences

m
ustbe

recalculated.

U
sing

∆
E

functions
has

proved
to

be
valuable

in
the

im
plem

entation
of

the
task

allocation
algorithm

—
in

one
im

plem
entation

the
algorithm

executed
about

a
hundred

tim
es

faster
w

hen
∆

E
functions

w
ere

used.
Further

reductions
in

running
tim

e
can

be
obtained

by
parallelising

the
algorithm

[18,1,20].

5.
R

E
SU

L
T

S

E
valuating

the
perform

ance
of

the
sim

ulated
annealing

algorithm
is

difficult,since
to

com
pare

the
resultproduced

w
ith

the
optim

al
resultrequires

the
optim

alresultto
be

found!
N

evertheless,som
e

m
easure

of
the

perform
ance

of
the

algorithm
can

be
m

ade
(A

ppendix
1

presents
an

exam
ple

allocation
problem

and
show

s
how

the
algorithm

finds
a

good
solution).

T
o

check
the

perform
ance

of
the

algorithm
a

sm
all

problem
(9

tasks
and

5
processors)

w
as

used
and

the
optim

al
allocation

found
by

brute-force
evaluation

of
all

possible
allocations.

T
he

sim
ulated

annealing
algorithm

produced
identical

optim
al

results.
O

f
course,

finding
the

optim
al

allocation
for

a
sm

all
problem

is
no

guarantee
that

an
optim

al
allocation

is
alw

ays
obtained

for
largerproblem

s.

T
he

algorithm
w

as
also

tested
w

ith
a

contrived
larger

problem
(w

here
the

tasks
could

be
perfectly

partitioned
into

tightly
coupled

clusters)
w

ith
an

optim
al

energy
of

zero.T
he

annealing
algorithm

found
an

allocation
w

ith
this

optim
al

energy;
each

cluster
w

as
identified

and
located

on
a

separate
processor.

A
good

test
of

an
allocation

algorithm
is

to
take

a
soluble

problem
and

add
resources;

the
algorithm

should
return

an
allocation

no
w

orse
than

the
result

of
the

original
problem

*;
this

w
as

observed
for

our
sim

ulated
annealing

approach.T
he

report
[19]

details
these

tests
and

presents
the

results
found.

T
he

sim
ulated

annealing
algorithm

has
been

extensively
applied

in
m

any
fields,

including
V

L
SI

placem
ent,

routing,
and

im
age

processing.
(See

[1]
for

an
extensive

survey).
T

he
perform

ance
results

obtained
from

these
applications

are
encouraging

—
A

arts
and

K
orst[1]

obtain
solutions

to
the

travelling
salesm

an
problem

to
w

ithin
2%

of
the

optim
al

solution.
W

e
contend

that
this

problem
is

structurally
sim

ilar
to

the
task

allocation
problem

.
Price

and
Salam

a
[15]

have
hhhhhhhhhhhhhhhhhh

*
N

ot
quite

true.E
ach

processor
takes

tim
e

τ
to

pass-on
the

token,so
m

ore
processors

increase
the

T
R

T
.A

version
of

the
program

w
here

τ
=

0
w

as
used.

-
12

-

com
pared

the
use

of
sim

ulated
annealing

and
heuristics

for
the

allocation
of

non-real-tim
e

tasks,
and

found
that

sim
ulated

annealing
produced

better
results.

T
hey

also
assert

that
sim

ulated
annealing

characteristicly
requires

com
putation

tim
e

that
scales

as
a

low
order

polynom
ial

problem
.

B
ollinger

and
M

idkiff
[4]

have
applied

sim
ulated

annealing
to

the
problem

of
allocating

tasks
and

processor
links

in
a

point-to-point
non-real-tim

e
netw

ork,and
have

found
thatsim

ulated
annealing

applied
to

this
problem

is
O

(N
2.8).

K
irkpatrick

etal[10]found
thatsim

ulated
annealing

applied
to

the
travelling

salesm
an

problem
is

approxim
ately

O
(n

logn
).

6.
C

O
N

C
L

U
SIO

N
S

Sim
ulated

annealing
has

proved
to

be
an

effective
approach

to
task

allocation:the
results

produced
are

near-optim
al,

the
algorithm

scales
w

ell
for

large
problem

s,
and

there
are

several
im

plem
entation

enhancem
ents

to
increase

the
speed

of
the

algorithm
.

T
he

great
beauty

of
the

algorithm
is

that
it

is
sufficient

to
say

w
hat

m
akes

a
good

solution
w

ithout
describing

how
to

get
one.

T
his

becom
es

very
im

portant
as

real
tim

e
architectures

becom
e

com
plex

w
ith

m
any

global
tradeoffs

—
it

m
ay

be
difficult

or
im

possible
to

obtain
good

heuristics
for

m
any

hard
real

tim
e

problem
s

(A
ppendix

1
show

s
how

the
algorithm

w
as

easily
changed

to
balance

processor
utilisation).

7.
A

C
K

N
O

W
L

E
D

G
E

M
E

N
T

S

T
he

authors
w

ould
like

to
thank

John
M

cD
erm

id,D
ave

Scholefield,and
R

ussell
B

eale
for

helpful
com

m
ents

on
an

earlier
version

of
this

paper.T
he

authors
w

ould
also

like
to

thank
N

eil
A

udsley
for

help
w

ith
deadline

m
onotonic

scheduling,
and

A
ndy

H
utcheon

for
com

m
ents

on
the

im
plem

entation
of

the
algorithm

.

8.
R

E
F

E
R

E
N

C
E

S

1.
E

.
H

.
L

.
A

arts
and

J.
K

orst,
Sim

ulated
A

nnealing
and

B
oltzm

ann
m

achines,
W

iley-
Interscience

(1988).

2.
N

.
C

.
A

udsley,
A

.
B

urns,
M

.
F.

R
ichardson

and
A

.
J.

W
ellings,

‘‘H
ard

R
eal-T

im
e

Scheduling:
T

he
D

eadline
M

onotonic
A

pproach’’,
P

roceedings
8th

IE
E

E
W

orkshop
on

R
eal-Tim

e
O

perating
System

s
and

Softw
are,A

tlanta,U
SA

(15-17
M

ay
1991).

3.
J.A

.B
annister

and
K

.S.T
rivedi,‘‘T

ask
A

llocation
in

Fault-T
olerantD

istributed
System

s’’,
A

cta
Inform

atica
20,pp.261-281

(1983).

4.
S.

W
ayne

B
ollinger

and
Scott

F.
M

idkiff,
‘‘H

euristic
T

echnique
for

Processor
and

L
ink

A
ssignm

ent
in

M
ulticom

puters’’,IE
E

E
Transactions

on
C

om
puters

40,pp.325-333
(M

arch
1991).

5.
A

.
B

urns,
‘‘Scheduling

H
ard

R
eal-T

im
e

System
s:

A
R

eview
’’,

Softw
are

E
ngineering

Journal6(3),pp.116-128
(1991).

6.
G

.
C

hen
and

J.
Y

ur,
‘‘A

B
ranch-and-B

ound-w
ith-U

nderestim
ates

A
lgorithm

for
the

T
ask

A
ssignm

ent
Problem

w
ith

Precedence
C

onstraint’’,
10th

International
C

onference
on

D
istributed

C
om

puting
System

s,pp.494-501
(1990).

7.
C

hu,
W

.W
.

and
L

an,
L

.M
.,

‘‘T
ask

allocation
and

precedence
relations

for
distributed

real-
tim

e
system

s’’,
IE

E
E

Transactions
on

C
om

puters
A

02,
pp.667-79,

IE
E

E
T

rans.
C

om
put.

(U
SA

)
(June

1987).

8.
A

.D
am

m
,J.R

eisinger,W
.Schw

abl
and

H
.K

opetz,‘‘T
he

R
eal-T

im
e

O
perating

System
of

-
13

-

M
A

R
S’’,A

C
M

O
perating

System
s

R
eview

23(3
(SpecialIssue)),pp.141-15

(1989).

9.
H

oustis,
C

.E
.,

‘‘M
odule

allocation
of

real-tim
e

applications
to

distributed
system

s’’,
IE

E
E

Transactions
on

Softw
are

E
ngineering

16(7),pp.699-709,
IE

E
E

T
rans.Softw

.E
ng.(U

SA
)

(July
1990).

10.
S.

K
irkpatrick,

C
.

D
.

G
elatt

and
M

.
P.

V
ecchi,

‘‘O
ptim

isation
by

Sim
ulated

A
nnealing’’,

Science(220),pp.671-680
(1983).

11.
P.

J.
M

.
L

aarhoven
and

E
.

H
.

L
.

A
arts,

Sim
ulated

A
nnealing:

Theory
and

A
pplications,

D
.

R
eidelPublishing

(1987).

12.
J.

L
ehoczky,

L
.

Sha
and

Y
.

D
ing,

‘‘T
he

R
ate

M
onotonic

Scheduling
A

lgorithm
:

E
xact

C
haracterisation

and
A

verage
C

ase
B

ehaviour’’,
P

roceedings
of

the
R

eal-T
im

e
System

s
Sym

posium
(1989).

13.
J.

Y
.

T
.

L
eung

and
J.

W
hitehead,

‘‘O
n

T
he

C
om

plexity
of

Fixed-Priority
Scheduling

of
Periodic

R
eal-T

im
e

T
asks’’,

P
erform

ance
E

valuation,
pp.237-250

(V
ol.

2,
Part

4,
D

ec
1982).

14.
C

.
L

.
L

iu
and

J.
W

.
L

ayland,
‘‘Scheduling

A
lgorithm

s
for

M
ultiprogram

m
ing

in
a

H
ard-

R
eal-T

im
e

E
nvironm

ent’’,Journalofthe
A

C
M

20(1),pp.46-61
(1973).

15.
C

.
C

.
Price

and
M

.
A

.
Salam

a,
‘‘Scheduling

of
Precedence-C

onstrained
T

asks
on

M
ultiprocessors’’,T

he
C

om
puter

Journal33(3),p.219
(1990).

16.
N

.R
adcliffe

and
G

.W
ilson,‘‘N

atural
Solutions

G
ive

T
heir

B
est’’,N

ew
Scientist,pp.47-50

(14th
A

pril1990).

17.
K

.
R

am
am

ritham
,

‘‘A
llocation

and
Scheduling

of
C

om
plex

Periodic
T

asks’’,
10th

InternationalC
onference

on
D

istributed
C

om
puting

System
s,pp.108-115

(1990).

18.
Pierre

R
oussel-R

agot
and

G
erard

D
reyfus,

‘‘A
Problem

Independent
Parallel

Im
plem

entation
of

Sim
ulated

A
nnealing:

M
odels

and
E

xperim
ents’’,IE

E
E

T
ransactions

on
C

om
puter-A

ided
D

esign
9(8)

(A
ugust1990).

19.
K

.
T

indell,
‘‘A

llocating
R

eal-T
im

e
T

asks
(A

n
N

P-H
ard

Problem
m

ade
E

asy)’’,
Y

C
S

149,
D

epartm
entof

C
om

puter
Science,U

niversity
of

Y
ork

(D
ecem

ber1990).

20.
V

.
V

arbosa
and

M
.

C
.

B
oeres,

‘‘A
n

occam
based

evaluation
of

a
parallel

version
of

Sim
ulated

A
nnealing’’,M

icroprocessing
and

M
icroprogram

m
ing,pp.85-92,E

urom
icro

’90
(1990).

A
P

P
E

N
D

IX
1:A

N
E

X
A

M
P

L
E

R
U

N

T
his

section
describes

an
exam

ple
run

of
a

task
allocation

program
giving

a
good

final
solution,

and
indicates

how
the

resultw
as

obtained.T
he

quality
of

the
resultis

discussed,and
an

illustration
of

the
flexibility

and
pow

erof
the

approach
is

given.

In
order

to
illustrate

the
algorithm

a
specific

task
allocation

problem
is

required.
T

he
table

below
show

s
an

exam
ple

task
set,consisting

of
42

tasks,including
five

paired
replicas.

-
14

-

iii
T

ask
Period

W
C

E
T

M
em

ory
M

essages
L

ocation
iii
iii

0
60

4
3000

50→
1,150→

2
0

1
60

4
1500

60→
3,70→

4,30→
5

2
60

2
1200

20→
3

3
60

2
1700

1
4

60
2

3000
60→

6
5

60
4

3000
80→

6
6

60
6

1100
2

7
35

2
500

40→
8

1
8

35
2

700
1

9
35

8
900

90→
11

0
10

35
14

2200
250→

11
11

35
4

1000
1

12
14

2
1000

150→
13,150→

14
2

13
14

2
1500

50→
15

14
14

2
1600

50→
15

15
14

2
1300

3
16

14
2

1100
50→

17
3

17
14

2
1000

2
18

35
1

1000
50→

19
1

19
35

1
1600

1
20

14
1

1900
40→

21
21

14
2

2000
3

22
14

1
1000

40→
23

23
14

1
2000

40→
24

24
14

1
1000

20→
25

25
14

1
2000

20→
26

26
14

2
7000

20→
27,20→

28
27

14
1

1100
50→

29
28

14
1

900
30→

29
29

14
1

500
6

30
14

1
600

50→
31

7
31

14
2

800
70→

32
32

14
2

1300
7

33
20

3
1000

50→
35

2,3
34

20
2

1000
50→

35
0,1

35
20

2
1000

60→
36,60→

37
36

20
2

1000
6,7

37
20

2
1000

38
20

3
1000

50→
40

2,3
39

20
2

1000
50→

40
0,1

40
20

2
1000

60→
41,60→

42
41

20
2

1000
6,7

42
20

2
1000

6,7
iii
c c

c c

c c

c c

c c

c c

c c

T
he

table
show

s
the

periods
and

W
C

E
T

(w
orst-case

execution
tim

e)
for

each
task,along

w
ith

the

-
15

-

m
em

ory
required

(in
bytes)

and
the

m
essages

sent
betw

een
tasks.

T
he

entry
"60→

41,60→
42"

indicates
m

essages
of

60
bytes

sent
to

tasks
41

and
42.

T
he

final
colum

n
in

the
table

show
s

any
location

constraints
—

task
33

(for
exam

ple)
m

ustbe
located

on
eitherprocessor

2
or

processor
3.

T
here

are
8

processors
in

the
system

,w
ith

equalexecution
speeds,and

w
ith

the
follow

ing
m

em
ory

capacities:

iiiiiiiiiiiiiiiiiiiii
Processor

C
apacity

iiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiii

0
10000

1
10000

2
10000

3
12000

4
7000

5
7000

6
12000

7
10000

iiiiiiiiiiiiiiiiiiiii
c c c c c c c c c c c c c c c

c c c c c c c c c c c c c c c

c c c c c c c c c c c c c c c

T
he

follow
ing

tasks
m

ustavoid
each

other(they
are

replicas):

T
asks

33
and

38
T

asks
34

and
39

T
asks

35
and

40
T

asks
36

and
41

T
asks

37
and

42

T
he

first
step

in
applying

the
algorithm

is
to

choose
the

start
tem

perature
and

the
w

eights
on

the
energy

com
ponents

—
these

can
allbe

chosen
by

‘rules
of

thum
b’.T

he
starttem

perature
chosen

is
65536,and

the
w

eights
chosen

are:

k
1 =

15777.3
k

2 =
117.4

k
3 =

1.0
k

4 =
12.4

Itshould
be

pointed
outthatthe

values
of

the
w

eights
are

fairly
arbitrary

(the
algorithm

is
notvery

sensitive
to

the
value

of
the

w
eights),

and
w

ere
chosen

so
that

hard
constraint

com
ponents

return
sim

ilarvalues,and
thatthe

softconstraintcom
ponentreturns

low
ervalues.

Firstly,
a

random
allocation

is
chosen.

T
he

table
below

show
s

the
allocation,

and
adopts

the
follow

ing
notation:T

he
firstrow

indicates
the

processor
num

ber,and
the

num
bers

underneath
each

processor
are

the
tasks

allocated
to

that
processor,

listed
in

priority
order.

T
he

‘*’
sym

bol
by

a
task

indicates
thatthe

task
is

unschedulable.

-
16

-

0
1

2
3

4
5

6
7

1
4
*
1
3
*
1
2
*
1
6
*

3
5
*
2
2
*
3
0
*

2
0
*
3
9
*
2
6
*
2
4
*

4
0
*
2
9

1
0
*

2
5
*

7
2
7
*
3
1
*

3
7

3
2
*

2
8
*

8
3
3
*
1
5

4
3
6
*

3
4
*
1
1

3
8
*
2
1

4
1
*

9
*
1
8

1
7

1
4
2
*

2
3
*
1
9

6
5

2
*

0
*

3

P
r
o
c
e
s
s
o
r
0
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
8
2
.
4
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
1
3
3
.
0
%

P
r
o
c
e
s
s
o
r
1
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
5
6
.
2
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
9
0
.
0
%

P
r
o
c
e
s
s
o
r
2
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
9
0
.
0
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
1
3
2
.
0
%

P
r
o
c
e
s
s
o
r
3
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
7
7
.
6
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
8
9
.
2
%

P
r
o
c
e
s
s
o
r
4
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
0
.
0
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
0
.
0
%

P
r
o
c
e
s
s
o
r
5
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
3
3
.
3
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
4
7
.
1
%

P
r
o
c
e
s
s
o
r
6
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
1
4
.
3
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
1
2
.
5
%

P
r
o
c
e
s
s
o
r
7
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
9
4
.
8
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
8
3
.
0
%

T
R
T
=
2
3
.
4
m
s
,
b
u
s
s
p
e
e
d
=
9
0
b
y
t
e
s
/
m
s
,
b
u
s
u
t
i
l
i
s
a
t
i
o
n
=
9
6
.
2
%

T
he

token
rotation

tim
e

based
upon

the
peak

load
is

23.4
m

s
(of

course,som
e

tasks
could

execute
m

ore
than

once
in

this
tim

e,
increasing

the
peak

load
—

w
e

ignore
this

aspect
since

for
a

schedulable
system

T
R

T
m

ustbe
less

than
the

periods
of

tasks
using

the
bus).T

he
bus

utilisation
is

96%
.

T
here

are
three

replica
clashes:33

and
38,35

and
40,and

36
and

41,giving
a

replica
penalty

of
6

(33
‘sees’

38
as

a
clash,and

38
‘sees’

33
as

a
clash,so

each
pair

is
counted

tw
ice).

T
he

system
is

unschedulable
(due

m
ostly

to
a

T
R

T
of

23.4
m

s),
and

processors
0

and
2

have
m

em
ory

utilisations
of

approxim
ately

132%
.

T
he

total
energy

for
this

allocation
is

447618.
T

he
next

step
in

the
annealing

algorithm
is

to
apply

the
neighbour

function.
T

he
neighbour

function
needs

to
decide

w
hether

to
apply

a
task

m
ove,or

to
sw

ap
tw

o
tasks

(for
this

exam
ple

w
e

set
the

probability
of

using
sw

aps
to

0.15).
L

et’s
assum

e
that

a
m

ove
is

chosen.
T

he
neighbour

function
random

ly
picks

a
task:

task
22.

T
his

task
can

be
placed

on
any

processor,
and

one
is

random
ly

chosen:processor
1.T

he
new

allocation
looks

like
this:

-
17

-

0
1

2
3

4
5

6
7

1
4
*
1
3
*
1
2
*
1
6
*

3
5
*
2
9

3
0
*

2
0
*
2
2
*
2
6
*
2
4
*

4
0
*

1
0
*

2
5
*
3
9
*
2
7
*
3
1
*

3
7

3
2
*

2
8
*

7
3
3
*
1
5

4
3
6
*

3
4
*

8
3
8
*
2
1

4
1
*

9
*
1
1

1
7

1
4
2
*

2
3
*
1
8

6
5

2
*

0
*
1
93

P
r
o
c
e
s
s
o
r
0
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
8
2
.
4
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
1
3
3
.
0
%

P
r
o
c
e
s
s
o
r
1
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
6
3
.
3
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
1
0
0
.
0
%

P
r
o
c
e
s
s
o
r
2
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
9
0
.
0
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
1
3
2
.
0
%

P
r
o
c
e
s
s
o
r
3
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
7
7
.
6
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
8
9
.
2
%

P
r
o
c
e
s
s
o
r
4
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
0
.
0
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
0
.
0
%

P
r
o
c
e
s
s
o
r
5
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
3
3
.
3
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
4
7
.
1
%

P
r
o
c
e
s
s
o
r
6
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
7
.
1
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
4
.
2
%

P
r
o
c
e
s
s
o
r
7
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
9
4
.
8
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
8
3
.
0
%

T
R
T
=
2
3
.
4
m
s
,
b
u
s
s
p
e
e
d
=
9
0
b
y
t
e
s
/
m
s
,
b
u
s
u
t
i
l
i
s
a
t
i
o
n
=
9
6
.
2
%

T
ask

22
has

increased
the

load
on

processor
1

w
hich

m
akes

tasks
of

low
erpriority

less
schedulable

(in
particular,

the
deadline

of
task

39
is

m
issed

by
a

larger
am

ount).
T

ask
22

still
needs

to
send

m
essages

on
the

bus,so
there

is
no

change
in

the
peak

load
and

hence
T

R
T

.
T

he
totalenergy

for
this

allocation
is

450620
(leading

to
an

increase
in

energy
of

3002.
A

t
the

current
tem

perature
of

65536
the

expression
e

T
E

old
−

E
new

hhhhhhhhhh

evaluates
to

0.96,
giving

a
0.96

chance
of

the
jum

p
being

accepted.A
ssum

e
thatthe

jum
p

is
taken

(no
further

action
is

required).N
ow

assum
e

the
neighbour

function
decides

to
sw

ap
tw

o
tasks,

and
picks

tasks
10

and
23.

T
he

follow
ing

allocation
is

produced:

-
18

-

0
1

2
3

4
5

6
7

1
4
*
1
3
*
1
2
*
1
6
*

3
5
*
2
9

2
3
*

2
0
*
2
2
*
2
6
*
2
4
*

4
0
*

3
0
*

2
5
*
3
9
*
2
7
*
3
1
*

3
7

3
2

2
8
*

7
3
3
*
1
5

4
3
6

3
4
*

8
3
8
*
2
1

4
1

9
*
1
1

1
7

1
4
2

1
0
*
1
8

6
5

2

0
*
1
93

P
r
o
c
e
s
s
o
r
0
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
1
1
5
.
2
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
1
3
5
.
0
%

P
r
o
c
e
s
s
o
r
1
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
6
3
.
3
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
1
0
0
.
0
%

P
r
o
c
e
s
s
o
r
2
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
9
0
.
0
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
1
3
2
.
0
%

P
r
o
c
e
s
s
o
r
3
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
7
7
.
6
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
8
9
.
2
%

P
r
o
c
e
s
s
o
r
4
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
0
.
0
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
0
.
0
%

P
r
o
c
e
s
s
o
r
5
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
3
3
.
3
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
4
7
.
1
%

P
r
o
c
e
s
s
o
r
6
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
7
.
1
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
4
.
2
%

P
r
o
c
e
s
s
o
r
7
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
6
1
.
9
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
8
1
.
0
%

T
R
T
=
2
4
.
2
m
s
,
b
u
s
s
p
e
e
d
=
9
0
b
y
t
e
s
/
m
s
,
b
u
s
u
t
i
l
i
s
a
t
i
o
n
=
1
0
1
.
2
%

T
he

energy
for

this
point

is
490606,resulting

in
an

increase
in

energy
of

39986,and
the

chance
of

taking
this

jum
p

is
0.54.

A
num

ber
of

these
jum

ps
are

proposed
at

each
tem

perature.
T

he
tem

perature
is

reduced
w

hen
a

fixed
num

ber
of

dow
nw

ard
jum

ps
have

been
m

ade,
or

w
hen

an
upper

lim
it

on
the

num
ber

of
proposed

jum
ps

is
reached.In

this
exam

ple,
the

tem
perature

is
reduced

after
50

jum
ps

have
been

m
ade,or

a
totalof

1000
jum

ps
have

been
proposed.T

he
follow

ing
show

s
the

pattern
of

jum
ps

for
the

currenttem
perature:

ˆ
=
v
v
=
=
=
v
=
ˆ
=
=
ˆ
ˆ
=
=
-
=
=
=
=
v
=
ˆ
v
v
=
=
=
v
=
v
ˆ
=
=
v
ˆ
ˆ
=
=
-
-
-
ˆ
=
=
=
=
v
=
=
v
=
v
v
=
=
=
=
-
=
ˆ
=
=

-
-
=
-
ˆ
=
=
=
=
ˆ
=
=
=
=
ˆ
v
=
=
=
=
=
=
=
=
=
=
v
=
=
=
ˆ
v
=
=
=
=
=
=
=
=
=
=
=
ˆ
ˆ
=
=
=
=
ˆ
=
v
=
=
=
v
-
v
v
=
=
=
ˆ
v

=
v
-
v
-
=
=
ˆ
v
=
=
=
v
v
v
=
=
=
=
ˆ
-
v
ˆ
=
ˆ
=
=
v
=
=
=
=
v
ˆ
=
-
ˆ
=
v
=
=
=
v
=
ˆ
=
=
=
=
=
ˆ
=
v
=
=
=
=
v
=
v
=
=
=
=

v
v
=
v
=
=
v
-
ˆ
=
=
ˆ
-
=
=
=
v
=
=
v
ˆ
ˆ
v
=
=
=
=
v
=
=
=
ˆ
ˆ
=
-
=
=
v
=
-
=
ˆ
-
v
ˆ
-
=
=
=
=
ˆ
=
=
v
=
=
=
=
=
=
ˆ
=
=
=

=
=
=
=
v
ˆ
ˆ
ˆ
=
=
ˆ
=
=
=
=
=
-
=
=
=
-
=
=
v
v
=
-
=
=
ˆ
=
v

T
he

‘v’
sym

bol
indicates

that
a

dow
nw

ard
(energy

reducing)
jum

p
w

as
taken.

T
he

‘ˆ’
sym

bol
indicates

that
an

upw
ard

jum
p

w
as

taken.
T

he
‘=

’
sym

bol
indicates

that
a

jum
p

to
an

allocation
w

ith
an

equalenergy
w

as
taken.

T
he

‘—
’

sym
bolindicates

thata
jum

p
w

as
proposed

butrefused.

A
s

can
be

seen
from

above,few
jum

ps
are

refused
atthis

tem
perature,and

the
algorithm

exam
ines

m
any

allocations.
A

s
the

tem
perature

is
low

ered
this

ability
is

reduced.
T

he
value

of
α

in
this

exam
ple

is
0.95,and

the
tem

perature
reduces

slow
ly.T

he
follow

ing
show

s
the

pattern
of

jum
ps

for
the

tem
perature

9332:

-
19

-

ˆ
=
=
=
=
=
=
-
v
-
=
=
=
=
=
=
-
=
=
-
=
ˆ
-
=
=
-
=
v
=
-
-
=
=
=
=
=
-
ˆ
=
=
=
=
-
=
-
=
-
=
=
=
-
=
v
=
ˆ
=
=
-
v
v
=
=
-
=

v
=
=
ˆ
=
=
ˆ
=
=
=
=
=
=
=
=
=
ˆ
=
=
=
=
=
-
-
ˆ
=
=
v
=
=
=
=
v
-
=
ˆ
=
=
v
-
=
=
-
-
ˆ
v
-
=
=
=
ˆ
-
=
=
-
=
v
=
=
=
ˆ
ˆ
=
=

=
v
ˆ
=
=
=
=
=
ˆ
=
=
=
=
v
=
=
-
=
v
v
-
=
=
=
-
=
v
=
=
=
-
-
=
=
=
ˆ
=
=
-
=
=
-
v
=
=
-
v
=
=
-
=
=
=
-
ˆ
=
v
ˆ
-
=
=
=
ˆ
=

-
-
=
ˆ
=
=
=
ˆ
=
=
=
v
=
=
=
=
-
=
=
=
=
=
=
v
ˆ
-
=
ˆ
=
=
v
=
-
=
=
ˆ
=
ˆ
=
=
=
-
=
-
-
=
=
v
-
v
-
=
=
=
-
=
=
ˆ
-
=
=
=
-
v

ˆ
=
v
=
-
=
=
=
=
-
=
=
-
=
-
-
=
-
ˆ
=
=
-
-
=
-
=
=
v
v
=
v
-
=
=
=
=
=
-
=
=
v
=
-
-
=
v
-
=
-
=
-
=
-
-
=
ˆ
-
-
=
=
=
-
=
=

=
-
=
=
=
ˆ
-
=
ˆ
=
ˆ
-
-
=
ˆ
=
-
v
=
=
-
=
=
=
v
=
v
-
=
ˆ
=
ˆ
v
-
=
=
-
=
-
-
ˆ
=
-
-
-
=
=
=
-
=
=
=
=
v
ˆ
=
=
=
=
=
-
=
=
=

-
-
=
=
=
=
v
=
v
=
=
=
=
v
-
=
=
-
=
=
ˆ
=
=
=
=
v
=
=
v
v
-
=
=
-
ˆ
-
ˆ
v
-
=
=
=
-
-
-
=
=
=
=
-
=
=
v
ˆ
-
-
=
=
=
ˆ
=
-
=
=

=
-
-
ˆ
ˆ
=
-
=
-
=
=
=
-
-
ˆ
=
=
=
-
=
-
=
=
=
=
=
=
=
=
-
-
ˆ
=
=
=
=
=
v
ˆ
-
v
=
ˆ
=
-
=
=
=
=
-
=
-
=
=
-
=
-
ˆ
v
=
=
=
v
=

=
v
ˆ
=
=
=
=
=
-
=
-
=
v

A
s

can
be

seen,m
any

m
ore

proposed
jum

ps
are

being
rejected,and

a
m

uch
larger

num
ber

of
trials

are
required

before
50

dow
nw

ard
jum

ps
are

m
ade.A

typicalallocation
atthis

tem
perature

is
given

below
:

0
1

2
3

4
5

6
7

3
9

3
4

1
3
*
1
6
*
2
4

2
2

2
9

2
0

9
7

1
4
*
2
6
*

4
2
8
*
4
0

2
5
*

1
8

2
7
*
3
8

5
3
5

4
1

2
3

2
1
0

3
3
*
1
5

3
7

4
2

3
0

0
1
1

1
2

2
1

3
1

1
8

1
7

3
2

1
9

6
3
6

3

P
r
o
c
e
s
s
o
r
0
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
4
9
.
5
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
7
6
.
0
%

P
r
o
c
e
s
s
o
r
1
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
8
1
.
9
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
9
7
.
0
%

P
r
o
c
e
s
s
o
r
2
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
8
9
.
3
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
8
3
.
0
%

P
r
o
c
e
s
s
o
r
3
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
7
2
.
1
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
1
0
3
.
3
%

P
r
o
c
e
s
s
o
r
4
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
1
7
.
1
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
6
1
.
4
%

P
r
o
c
e
s
s
o
r
5
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
3
4
.
3
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
5
5
.
7
%

P
r
o
c
e
s
s
o
r
6
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
3
7
.
1
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
2
9
.
2
%

P
r
o
c
e
s
s
o
r
7
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
6
7
.
1
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
9
6
.
0
%

T
R
T
=
1
2
.
9
m
s
,
b
u
s
s
p
e
e
d
=
9
0
b
y
t
e
s
/
m
s
,
b
u
s
u
t
i
l
i
s
a
t
i
o
n
=
5
1
.
6
%

T
he

energy
for

this
allocation

is
25435.

A
s

can
be

seen,
only

one
processor

now
has

a
m

em
ory

utilisation
of

greater
than

100%
,

and
m

ore
tasks

are
schedulable.

A
lso,

replicas
are

placed
on

differentprocessors.

A
ta

tem
perature

of
1717

few
jum

ps
are

being
taken:

=
=
ˆ
=
=
=
=
-
-
-
=
-
=
-
=
=
=
=
-
=
ˆ
v
-
-
=
=
=
=
=
-
=
=
-
=
=
-
-
=
=
v
=
-
=
=
v
=
-
=
=
=
-
=
-
=
=
=
=
ˆ
=
=
-
=
=
-

-
=
ˆ
-
=
=
-
=
-
=
=
=
ˆ
v
v
=
=
=
=
=
=
=
ˆ
-
=
-
=
=
=
=
-
=
=
-
-
-
=
=
-
=
=
-
=
=
v
-
-
=
=
ˆ
=
-
=
=
=
=
v
=
-
-
=
-
=
=

=
=
=
=
=
-
=
=
=
=
-
-
=
-
=
-
=
=
=
-
-
=
-
=
=
-
=
-
-
=
-
-
-
=
=
-
=
-
=
-
=
v
=
-
-
=
=
=
-
=
=
-
=
-
-
=
=
-
-
=
=
=
=
=

=
-
-
=
-
=
-
-
=
=
-
-
=
=
=
-
=
=
=
=
-
=
=
-
=
=
=
=
=
=
-
=
=
=
=
-
-
=
=
-
=
=
=
-
=
-
=
-
-
-
-
=
=
=
ˆ
-
=
-
-
=
ˆ
v
=
=

=
-
=
-
=
=
=
-
-
-
=
=
=
-
=
=
-
-
=
-
=
=
=
-
=
=
-
=
v
=
-
=
.
.
.
.
.

A
t

a
final

tem
perature

of
28

no
upw

ard
or

dow
nw

ard
jum

ps
have

been
m

ade
for

4000
proposed

jum
ps

and
the

finalallocation,w
ith

an
energy

of3403,is
show

n
below

:

-
20

-

0
1

2
3

4
5

6
7

3
5

3
9

1
3

1
6

2
5

2
6

3
0

3
4

7
1
4

3
8

2
2

2
7

3
1

3
7

8
3
3

1
5

2
3

2
8

3
2

9
1
0

1
2

2
0

2
4

2
9

4
0

1
1
1

1
7

2
1

3
6

4
1

2
1
8

6
5

4
2

4
1
9

0
3

P
r
o
c
e
s
s
o
r
0
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
7
2
.
9
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
9
9
.
0
%

P
r
o
c
e
s
s
o
r
1
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
8
1
.
9
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
9
7
.
0
%

P
r
o
c
e
s
s
o
r
2
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
8
2
.
1
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
7
2
.
0
%

P
r
o
c
e
s
s
o
r
3
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
7
1
.
7
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
8
5
.
8
%

P
r
o
c
e
s
s
o
r
4
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
2
8
.
6
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
8
5
.
7
%

P
r
o
c
e
s
s
o
r
5
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
0
.
0
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
0
.
0
%

P
r
o
c
e
s
s
o
r
6
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
4
5
.
7
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
8
7
.
5
%

P
r
o
c
e
s
s
o
r
7
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
6
5
.
7
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
5
7
.
0
%

T
R
T
=
8
.
7
m
s
,
b
u
s
s
p
e
e
d
=
9
0
b
y
t
e
s
/
m
s
,
b
u
s
u
t
i
l
i
s
a
t
i
o
n
=
2
9
.
4
%

A
s

can
be

seen,allthe
hard

constraints
have

been
m

et,and
the

bus
utilisation

is
low

.Interestingly,
the

solution
has

a
structure

to
it:com

m
unicating

subsystem
s

are
clustered

together
to

m
inim

ise
bus

traffic
and

to
increase

schedulability.For
exam

ple,tasks
22,23,24,25,27,27,28,and

29
are

all
related.

T
asks

26,
27,

28,
and

29
are

clustered
on

processor
6

(task
29

is
forced

to
reside

on
processor

6),
and

tasks
22,23,24,and

25
are

clustered
on

processor
4.

O
nly

one
m

essage
in

the
subsystem

is
senton

the
bus:task

25
sends

a
m

essage
to

task
26;allother

m
essages

are
local.

T
he

w
hole

subsystem
w

ould
notfiton

processor
6,and

the
bestplace

to
splitthe

subsystem
is

betw
een

tasks
25

and
26

(other
splits

w
ould

require
m

ore
com

m
unication

on
the

bus).

A
s

has
been

m
entioned

before,
the

annealing
algorithm

is
very

flexible
and

changes
can

be
accom

m
odated

easily.
A

sm
all

change
to

the
annealing

program
(just

a
few

lines)
w

as
m

ade
to

change
the

soft
constraint

to
balance

the
processor

utilisation
betw

een
the

used
processors

instead
of

m
inism

ising
bus

traffic
(it

could
be

argued
thata

‘balanced’
allocation

gives
better

tolerance
to

execution
tim

e
over-runs).A

t
a

bus
speed

of
90

bytes/m
sec

m
any

of
the

w
ell-balanced

allocations
result

in
infeasible

solutions
(since

a
high

bus
utilisation

gives
a

high
T

R
T

,
resulting

in
less

schedulable
allocations).

T
o

illustrate
the

potential
of

the
algorithm

the
program

w
as

run
on

a
problem

w
ith

a
faster

bus.T
he

follow
ing

allocation
w

as
produced:

-
21

-

0
1

2
3

4
5

6
7

2
2

2
4

1
2

1
6

4
0

1
3

2
6

2
5

3
4

2
8

3
8

3
3

1
0

1
4

3
1

3
0

9
3
9

1
7

1
5

5
2
0

2
7

2
3

0
7

4
2
1

3
5

2
9

3
2

1
8

6
3
7

4
1

3
6

1
1

2
4
2

1
8

1
93

P
r
o
c
e
s
s
o
r
0
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
5
3
.
3
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
7
4
.
0
%

P
r
o
c
e
s
s
o
r
1
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
5
6
.
2
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
9
4
.
0
%

P
r
o
c
e
s
s
o
r
2
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
5
6
.
9
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
4
4
.
0
%

P
r
o
c
e
s
s
o
r
3
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
5
7
.
9
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
4
5
.
0
%

P
r
o
c
e
s
s
o
r
4
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
5
6
.
7
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
8
8
.
6
%

P
r
o
c
e
s
s
o
r
5
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
5
5
.
7
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
1
0
0
.
0
%

P
r
o
c
e
s
s
o
r
6
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
5
6
.
2
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
9
6
.
7
%

P
r
o
c
e
s
s
o
r
7
:
p
r
o
c
e
s
s
i
n
g
u
t
i
l
i
s
a
t
i
o
n
5
5
.
7
%
,
m
e
m
o
r
y
u
t
i
l
i
s
a
t
i
o
n
7
9
.
0
%

T
R
T
=
7
.
9
m
s
,
b
u
s
s
p
e
e
d
=
2
5
0
b
y
t
e
s
/
m
s
,
b
u
s
u
t
i
l
i
s
a
t
i
o
n
=
9
1
.
3
%

T
his

allocation
is

feasible
—

all
tasks

are
schedulable,

all
processors

have
m

em
ory

utilisations
≤

100%
,and

replicas
are

on
differentprocessors.

T
he

average
processor

utilisation
is

56%
.

