Allocating Hard Real TimeTasks T
(An NP-Hard Problem Made Easy)

Ken Tindell
Alan Burns
Andy Wellings

Real Time Systems Research Group
Department of Computer Science
University of York
England

email: ken@minster.york.ac.uk

ABSTRACT

A distributed hard real time system can be composed from a number of
communicating tasks. One of the difficulties with building such systems is the
problem of where to place the tasks. In general there are P T ways of allocating T
tasks to P processors, and the problem of finding an optimal feasible allocation
(where al tasks meet physical and timing constraints) is known to be NP-Hard.
This paper describes an approach to solving the task alocation problem using a
technique known as simulated annealing. It also defines a distributed hard real-
time architecture and presents new analysis which enables timing requirements to
be guaranteed.

1. INTRODUCTION

Building real-time systems on distributed architectures presents engineers with a number of
challenging problems. Oneissueis that of scheduling the communication media, another concerns
the alocation of software components to the available processing resources. Distributed systems
typically consist of a mixture of periodic and sporadic tasks, each with an associated deadline and
possibly precedence constraints. Failure to meet the deadlines of critical tasks may lead to a
catastrophic failure of the system, and consequently off-line analysis of allocation and processor
scheduling is required to guarantee task deadlines.

In generd, the three activities of task allocation, processor scheduling and network scheduling are
all NP-hard problems [5]. This has led to a view that they should be considered separately.
Unfortunately, it is often not possible to obtain optimal solutions (or even feasible solutions) if the
three activities are treated in isolation. For example, allocating a task T to a processor P will
increase the computational load on P, but may reduce the load on the communications media (if T

T This work was supported in part by British Aerospace (Commercial Aircraft) Ltd, and by the UK Department of Trade
and Industry

-2

communicates with tasks on P), and hence the response time of the communications media is
reduced, allowing communications deadlines elsewhere in the system to be met. The tradeoffs can
become very complex as the hard real time architecture becomes more expressive; a simple and
scalable approach is required.

Previous approaches to solving the task allocation problem have mostly concentrated on graph
theoretic algorithms (for example [6] and[7]) or heuristics (for example [3] and[9]). Most have
tried to maximise system throughput (i.e. minimise the computational and communication resource
requirements for tasks in the system), often by reducing ‘bottlenecks’, resulting in allocations
which may or may not be schedulable. However, these approaches do not take a global view; they
rely on the observation that fast systems (i.e. ones which maximise system throughput) usually
equate to schedulable systems. Of course, the major requirement for a hard real time system is to
meet deadlines, and most previous allocation approaches do not address this — usudly a post-
allocation phase is needed to determine the schedulability of a given allocation. For example, the
current MARS [8] approach separates the allocation and scheduling problems, solving each in
turn, which can lead to sub-optimal solutions. Indeed, when looking for alocations which are
merely feasible (i.e. al hard constraints — such as guaranteed deadlines — are met) the
partitioned approach can fail to find solutions where an algorithm taking the globa view can
succeed.

One approach that does attempt to address systematically the global allocation problem is the work
of Ramamritham [17], where the allocation algorithm directly addresses the schedulability of the
tasks, and hence takes a global view. In Ramamritham’s architecture multiple processors are
connected by a shared broadcast bus which operates a TDMA (time division multiple access)
protocol. The schedulability of tasksin the system is determined by evaluating fixed processor and
bus schedules. The tasks are allocated to processors according to a set of heuristics which consist
of simple rules. For example, one rule moves tasks which communicate to the same processor (so
that communication can take place without using the bus). Another rule moves tasks away from
unschedulable processors. A problem with heuristics is that complex tradeoffs can occur which the
designer must foresee, and the resolution of conflicts (such as in the two rules above) is not trivial.
Also, schedule evaluation can be computationally intensive since a schedule must be evaluated
over the least common multiple (Icm) of the task periods, and this may equal the multiple of the
task periods.

In summary, the general alocation problem has yet to be adequately addressed. Not only must an
allocation satisfy certain hard constraints, but it should also aim to optimise some aspect of the
system model. In addition, a proposed solution to the allocation problem must be scalable and be
able to encompass a variety of complex system architectures (perhaps even choosing between
architectures as part of the allocation process).

Asindicated earlier, task alocation can be viewed as a global optimisation problem. It issimilar in
nature to other problems found in computer science, such as the travelling salesman problem.
These problems have been successfully solved by the global optimisation technique known as
simulated annealing [10]. Simulated annealing is not a heuristic algorithm — it is sufficient to
state what makes a good solution not how to get one, and therefore does not suffer the
disadvantages of applying inadequate heuristics. This paper describes how the simulated
annealing agorithm can be used to solve the task allocation problem. We believe the agorithm is
scalable and able to encompass complex hard real time architectures.

The next section describes the algorithm. In order to focus the application of the algorithm more
clearly Section 3 gives a distributed hard rea time architecture and presents an analysis of the

-3-

architecture. The section aso clearly states the task allocation problem for the example
architecture. Section 4 shows how the simulated annealing algorithm is applied to solving the task
allocation problem. Section 5 presents the results of implementing the algorithm, and Section 6
draws conclusions and indicates how further work is using the simulated annealing algorithm.
Appendix 1 givesalarge task and processor set and shows the results of applying the algorithm.

2. THEALGORITHM

Simulated annealing [16,10,1] is a global optimisation technique, which attempts to find the
lowest point in an energy landscape. The technique was derived from observations of how slowly
cooled molten metal can result in a regular crystalline structure. The distinctive feature of the
algorithm is that it incorporates random jumps to potential new solutions. This ability is controlled
and reduced as the agorithm progresses.

In order to describe the algorithm some definitions are needed. The set of all possible allocations
for agiven set of tasks and processors is called the problem space. A point in the problem space is
amapping of tasks to processors. The neighbour space of a point is the set of al points that are
reachable by moving any single task to any other processor. The energy of a point is a measure of
the suitability of the allocation represented by that point (poor alocations are high energy points).
The energy function, with parameters, determines the shape of the problem space — it can be
visualised as a rugged landscape, with deep valleys representing good solutions, and high peaks
representing poor or infeasible ones. The allocation problem is that of finding the lowest energy
point in the problem space.

A random starting point is chosen, and the energy, Es, evaluated. A random point in the neighbour
space is then chosen, and the energy, E;,, evaluated. This point becomes the new starting point if
either E, < Eg, or if:

e* = random(0,1)

Where

C isthe control variable

and ‘random’ is a uniform random number generator
The control variable C is analogous to the temperature factor in a thermodynamic system. During
the annealing process C is slowly reduced (‘cooling’ the system), making higher energy jumps less
likely. Eventually, the system ‘freezes’ into a low energy state. The structure of the algorithm is
sketched below:

choose random starting point P o

choose starting temperature C

repeat

repeat
Ep := Energy at point P,
choose T, a neighbour of P,,
Et :=Energy at point T
if Er < Ep then
_U: +17

else

Ep - Er

Cq
if e = random(0,1) then

X =

Pns1i=
else
Pr+1:=Py
fi
fi
until thermal equilibrium
Ch+1=1(Cy)
until some stopping criterion

As can be seen from above, the algorithm requires a neighbour function, an energy function, and a
cooling function.

The energy function is the heart of the allocation agorithm. It shapes the energy landscape, which
affects how the annealing algorithm reaches a solution. An example energy function for the
architecture given in the next section is described in Section 4.

The initial temperature, Cy, is chosen so that virtually all proposed jumps are taken, and this
temperature can be chosen by the agorithm: Kirkpatrick et al [10] pick a low temperature and
repeatedly double it until the acceptance ratio (the number of accepted jumps over the number of
proposed jumps) is near to 100%. Laarhoven and Aarts [11] take a more mathematical approach
and produce a recursive equation which rapidly converges to the ideal starting temperature. The
temperature decrease function, f (C,,), is usually a ssimple multiplication by a, where Osa<1.
Again, Laarhoven and Aarts propose a more complex function, which dynamically changes the
rate depending on the performance of the algorithm.

As can be seen from the algorithm description above, the temperature remains the same over a
number of trials until equilibrium is reached. These trials can be modelled as a markov chain, and
an equilibrium condition obtained. Kirkpatrick et al use a simple condition: the number of
downward (energy decreasing) jumps are counted and equilibrium is said to be achieved when the
count exceeds a threshold. Laarhoven and Aarts analyse the algorithm mathematically and propose
a more complex condition. Both approaches lead to potentially infinite chains (especialy at low
temperatures) and so an upper bound on the number of trialsis enforced (usually about four times
the size of the neighbour space).

The stopping criterion can also be determined automatically, and a simple approach is to terminate
when no upward or downward jumps have been taken over a number of successive chains.

A plot of Energy against Temperature for a typical problem is shown below (the results were

-5-

produced from an actual run of atask allocation program). Temperature is plotted on alog scale so
the scale can also represent linear time flowing from right to left. The temperature starts to
decrease rapidly at about 10.0 — this temperature is the ‘freezing point’ of the system in this
example, and cooling must be slow enough to prevent the system being trapped in a local
minimum, so the cooling rate a is usually between 0.95 and 0.99.

100 o
50—
Energy
20 ...u
10 K
5| i :
o.,ow o,.H “,F H,o Hmo
Temperature
Figure1

3. ADISTRIBUTED HARD REAL TIME ARCHITECTURE

In order to illustrate the approach, this section describes an example distributed hard real time
architecture. Although this architecture is simple we believe that smulated annealing can easily be
applied to more complex architectures (work at the Real Time Systems Research Group at Y ork
has already applied simulated annealing to the problem of alocating and scheduling precedence
constrained hard real time tasks).

Token passed
between processors
= -
7 7 Broadcast bus
“ -] M
CPUs

Figure 2: Physical architecture

Figure 2 shows the physical architecture — a number of processors are connected to a broadcast
bus, each processor having a fixed processing speed and memory capacity. A number of hard real
time periodic tasks execute on each processor. Every period atask executes a piece of code within
a bounded number of CPU cycles, and communicates the results of the computation by sending
messages to other tasks. Each task has a fixed memory requirement (there is no run-time memory
contention). In each period a task may send a bounded number of messages of a bounded size to
other tasks. A message sent between two tasks on the same processor is assumed to take zero time
to arrive. It is also assumed that message arrivals cause no overhead at the receiving processor

-6-

(these two assumptions have been removed in current work, but the analysisis beyond the scope of
this paper).

For this simple architecture a distributed version of the rate monotonic algorithm is required — a
message sent from a task arrives at the destination task by the end of the period of the sending task
(just as with a single processor rate monotonic system the results of computation are made
available by the end of the period of the task). Schedulability anaysis for distributed rate
monotonic scheduling is given below:

SCHEDULABILITY ANALYSIS

To implement distributed rate monotonic scheduling the results of a task must be made available to
the destination tasks by the end of the period of the sending task. If the source and destination tasks
are located on different processors then the transmission time for messages containing the results
must be allowed for (Figure 3).

Worst-case
execution time

%

Deadline for
queueing local
messages
Deadline for

queuing messages
for transmission
on the broadcast bus

Figure3

The messages must be guaranteed to arrive within the time allowed (hence a suitable bus protocol
isrequired). To guarantee that a task produces the results sufficiently early the task must execute to
a specified deadline. Current rate monotonic scheduling (RMS) theory [14,12] assumes that the
deadline of a task is equal to the period of the task. As can be seen from Figure 3 we need
schedulability analysis where the deadline of a task can be less than the period of a task. Deadline
monotonic scheduling (DMS) [13] is a static priority scheduling approach (like RMS) where the
priority of atask isassigned according to the deadline of the task (a short deadline resultsin ahigh
priority). Although Leung and Whitehead [13] proved that the deadline monotonic scheduling
approach is optimal they did not provide a schedulability test. A schedulability test has recently
been derived by Audsley et al [2]. The test takes the following form: each of n tasks must
complete the execution of their code (in time C) before the deadline D, and hence:

Ui 1<i<n Gi +1i <D; (1)

Where:
n Thenumber of tasks on the processor

C; Thebounded (worst-case) execution time of task i .
D; Thedeadlineof taski, whereD; < T,
T, Theperiod of task i

li The interference due to tasks with a higher priority preempting task i , given by:

|—1’7 Di ()
I = T :

Tasks are ordered by priority (task 1 has a higher priority than task 2), and priorities are assigned
by deadline, suchthat 0 <; D; < D;.

Thetest is sufficient — if Equation 1 is true then the task set is schedulable. The deadlines of each
of the tasks must be determined before the test can be applied; for a task sending only loca
messages we have:

Di :Ti

For atask which sends a message to tasks on other processors we have:

Where N isthe maximum delay in sending a message across the bus. More precisely, the delay is
the time taken between the message being queued at the sending processor and arriving at the
destination processor, and this time must be bounded by using an appropriate protocol. Both
MARS and Ramamritham use a statically scheduled TDMA protocol. In this paper we propose a
token passing protocol which bounds message delivery, but allows spare bus bandwidth to be used
for soft real time messagesin a flexible manner.

THE TOKEN PROTOCOL

A processor is only alowed to transmit on the busiif it holds a token, and can only hold the token
for abounded amount of time. After thistime, or when the processor has no more data to send, the
token is passed on to the next processor in alogical ring. The token holding time at each processor
islarge enough to guarantee that all messages in a queue on the processor can be sent the next time
the token arrives at the processor. Assuming that there is a critical message instant (i.e. al tasks
queue all messages simultaneously) the token holding time for processor p, is given by:

®

Where:

n(p) Number of tasks on processor p

M; , Total size of messages sent on the bus from thei th task residing on processor p
T;,p Period of thei th task on processor p

TRT Token rotation time for the bus

S Speed of thebus

The token rotation time (TRT) is the maximum time taken between successive token arrivals at a
processor. Any message queued is guaranteed to arrive at the destination processor within the
TRT, and messages can therefore be queued in FIFO order. The TRT is found by summing all the
token holding times (plus a small overhead per processor to transmit the token). Thus:

p
TRT = ¥ (THTi +1) 4)
j=1
P Number of processors in the system
T Time taken to transmit the token

Equations 3 and 4 are mutually dependent and a solution can be obtain by iterating to a fixed point.
Alternatively, the solution can be found quickly by observing that TRT < T, , if all tasks are
schedulable. So:

TRT -1
T|’p
n®) M;
OTHT, = Y —¢

i=1 S

O

In summary, using the token protocol analysis and the schedulability test presented earlier the
schedulability of tasksin a given alocation can be determined.

However, there are other hard constraints on a feasible allocation for this architecture:

. Some tasks can only reside on a subset of the available processors. For example, a task
monitoring a sensor or controlling an actuator must reside on a processor directly connected
to the physical hardware. Similarly, the processors may be heterogeneous and executable
task images of a certain type can only be run on a processor of that type.

. Some tasks may be replicated for fault tolerance and therefore cannot be alocated to the
same processor.

e Thememory usage of a processor cannot exceed the fixed capacity.

4. APPLYING THE ALGORITHM

This section describes the application of the simulated annealing algorithm to the task allocation
problem for the example hard real time architecture given in the previous section. It should be
noted that the neighbour and energy functions presented here are not the only possible functions
but are simple ones which have been found to work well in practice.

The neighbour function is simple: choose a random task and move it to a randomly chosen
processor. However, better allocations can be obtained if the ‘ degree of freedom’ of the system is
increased [1]. For example, a situation can occur where two processors A and B are heavily
loaded and contain tasks X and Y respectively. A better point can be obtained by swapping X and
Y. However, a move of X to B followed by another move of Y to A is unlikely to occur because
the first move would result in a high energy point (one of the processors becomes unschedulable).
If the neighbour function directly implements task swaps then the jump can take place. This can be

-9-

likened to a catalyst in a chemical reaction which allows the energy barrier to a viable reaction to
be ‘tunnelled’.

The energy function is more complex, and has to penalise the following characteristics of an
allocation:

(i) Tasksallocated to the wrong processors

(i) Replicasallocated to the same processor

(iii) Processors with amemory utilisations > 100%

(iv) Taskswhich are not guaranteed to meet their deadlines

These are hard constraints (an alocation with two unschedulable tasks is just as infeasible as an
allocation with a single unschedulable task). However, a measure of the ‘badness’ of an allocation
must be given, since if al infeasible allocations were given the same energy there would be no
path in the energy landscape to follow to a valley where an acceptable allocation might be found.

Characteristic (i) is penalised by returning an energy proportional to the number of misallocated
tasks. A short cut can be made by ensuring the neighbour function never chooses an alocation
where a task is misallocated — each task has a set of acceptable processors and only processors
from this set are chosen.

Characteristic (ii) is penalised by returning an energy component which is a function of the number
of replicas on the same processor:

P n(p) n(p) o
Ereplica= > > > replica(i,j) 5
p=1li=1j=1j#
Wherereplica(i,j) returns 1if i isareplicaof j, and zero otherwise.
Characteristic (iii) is penalised by returning an energy component proportional to the memory
usage in excess of the capacity of each processor:

P
Errem = 2. max[0, mu(p) - mc(p)] (6)
p=1

Where:
mu(p) Thememory used on processor p
mc(p) Thememory capacity of processor p
Characteristic (iv) can be penalised by returning an energy proportional to the overrun on each task
missing its deadline:
P n(p)
Eghed = 2 2 Max[0,C; +1i p = Dj])

p=li=1
Where:
n(p) Number of tasks on processor p

D;,p Deadline of ith task on processor p (where D =T —TRT for atask sending bus messages,
andD =T for atask sending only local messages)

Ci p Worst-case execution time of i th task on processor p
li,p Interference for i th task on processor p (see Equation 2)

-10-

There may be many feasible allocations, and some way of distinguishing between these would be
useful. In this paper the feasible allocation with the lowest bus utilisation is preferred (since more
soft real time messages could meet their deadlines with a lower bus utilisation). Therefore another
energy component, Eys, is needed, which returns an energy proportiona to the bus utilisation.
The complete energy, E, isgiven by:

E= I(1Ereplica +K2Emem + K3Esched + KaBpus

The k weightings allow the prioritisation of the hard constraint components, and balance out the
hard constraint components so that the range of valuesreturned by each are similar.

The Ep,,s component penalises allocations which violate a soft constraint, and care should be taken
to ensure that there is no tradeoff between hard and soft constraints. For example, a situation might
arise where the total energy for an infeasible but low bus utilisation allocation is lower than a
feasible alocation with a higher bus utilisation. Normally, the algorithm would return the
infeasible allocation as the better, and therefore it must be changed to ensure that this does not
occur. The anneal step is changed to include two rules:

(1) A jump from an infeasible to a feasible solution always occurs (even if the feasible solution
has a higher energy)

(2) A jump from a feasible to an infeasible solution of lower energy may occur, but with a
probability which decreases as the temperature decreases.

IMPLEMENTATION CONSIDERATIONS

During the execution of the simulated annealing algorithm the energy function is invoked many
thousands of times, and a considerable reduction in the run time of the algorithm can be made if
the energy function is evaluated quickly. With the neighbour function described earlier the energy
for a neighbouring point can be obtained quickly from the energy of the current point by
computing the differences in energy resulting from the change after applying the neighbour
function. To illustrate this consider the energy component E,e (See Equation 6). The neighbour
function moves a task T from processor Pyy t0 Phayw. When T moves from Pgyg to P, the
memory usage of all other processors in the system remains unaffected, and hence the memory
penalty due to these other processors remains the same (and need not be recal culated). The new
memory penalty can be calculated by removing the penaty due to Pyy and P, before T is
moved, and adding the penalty dueto Py 4 and Py, after T has moved.

Hence, and from Equation 6, the components of the memory penalty due to Py gy and Py, in the
neighbour point, F4" can be calculated. The penalty FSUTe for the current point due to Pygq
and Ppg, is aready known, and so the change in Eey due to the move, AE..y,, can be
determined:

DE e = FRGS" — Fedrent

Egleeri%h = Efare™ + AE e
Where:

Efdgh The value of E e, for the neighbour point

As can be seen from above, the evaluation of AE,,, has agorithmic complexity O (1), whereas
the evaluation of Epey has agorithmic complexity O(n) — the computation of EfSJ" is much

S11-

faster using AE . The energy components E;epica and Epys can be evaluated for the neighbour
point using appropriate AE functions formulated in a similar way to AE .

However, the formulation of AEgyeq is more complex and the following points must be noted:
e Whentask T movesfrom Pyq to Py, theinterference for T must be recalculated.

e Theinterference dueto T on lower priority taskslocated on Py 4 must be removed.

e Theinterference dueto T on lower priority taskslocated on Py, must be added.

e Themovement of T may affect the utilisation of the bus, changing the TRT. Thiswill affect
the deadlines of all tasks which send messages on the bus and may change the priority
ordering of tasks in the system, and hence interferences must be recal culated.

e The movement of T away from tasks on P,y which communicate with T and to tasks on
Prew Which communicate with T may change the deadlines of such tasks and hence the
relative priorities and interferences must be recal cul ated.

Using AE functions has proved to be valuable in the implementation of the task allocation
algorithm — in one implementation the algorithm executed about a hundred times faster when AE
functions were used. Further reductions in running time can be obtained by paralelising the
algorithm [18, 1, 20].

5. RESULTS

Evaluating the performance of the simulated annealing algorithm is difficult, since to compare the
result produced with the optimal result requires the optimal result to be found! Nevertheless, some
measure of the performance of the algorithm can be made (Appendix 1 presents an example
allocation problem and shows how the algorithm finds a good solution).

To check the performance of the algorithm a small problem (9 tasks and 5 processors) was used
and the optimal dlocation found by brute-force evaluation of all possible allocations. The
simulated annealing algorithm produced identical optimal results. Of course, finding the optimal
allocation for a small problem is no guarantee that an optimal alocation is aways obtained for
larger problems.

The algorithm was also tested with a contrived larger problem (where the tasks could be perfectly
partitioned into tightly coupled clusters) with an optimal energy of zero. The annealing algorithm
found an alocation with this optimal energy; each cluster was identified and located on a separate
processor.

A good test of an alocation agorithm is to take a soluble problem and add resources; the
algorithm should return an allocation no worse than the result of the original problem *; this was
observed for our simulated annealing approach. The report [19] details these tests and presents the
results found.

The simulated annealing algorithm has been extensively applied in many fields, including VLSI
placement, routing, and image processing. (See [1] for an extensive survey). The performance
results obtained from these applications are encouraging — Aarts and Korst [1] obtain solutions to
the travelling salesman problem to within 2% of the optimal solution. We contend that this
problem is structurally similar to the task alocation problem. Price and Salama [15] have

* Not quite true. Each processor takes time 1 to pass-on the token, so more processors increase the TRT. A version of the
program where =0 was used.

-12-

compared the use of simulated annealing and heuristics for the alocation of non-real-time tasks,
and found that simulated annealing produced better results. They also assert that simulated
annealing characteristicly requires computation time that scales as a low order polynomia
problem. Bollinger and Midkiff [4] have applied simulated annealing to the problem of allocating
tasks and processor links in a point-to-point non-real-time network, and have found that simulated
annealing applied to this problem is O (N28). Kirkpatrick et al [10] found that simulated annealing
applied to the travelling salesman problem is approximately O (nlogn).

6. CONCLUSIONS

Simulated annealing has proved to be an effective approach to task allocation: the results produced
are near-optimal, the algorithm scales well for large problems, and there are several
implementation enhancements to increase the speed of the algorithm. The great beauty of the
algorithm is that it is sufficient to say what makes a good solution without describing how to get
one. This becomes very important as real time architectures become complex with many global
tradeoffs — it may be difficult or impossible to obtain good heuristics for many hard real time
problems (Appendix 1 shows how the agorithm was easily changed to baance processor
utilisation).

7. ACKNOWLEDGEMENTS
The authors would like to thank John McDermid, Dave Scholefield, and Russell Beale for helpful
comments on an earlier version of this paper. The authors would aso like to thank Neil Audsley
for help with deadline monotonic scheduling, and Andy Hutcheon for comments on the
implementation of the algorithm.

8. REFERENCES

1. E. H. L. Aarts and J. Korst, Smulated Annealing and Boltzmann machines, Wiley-
Interscience (1988).

2. N. C. Audsley, A. Burns, M. F. Richardson and A. J. Wellings, ‘‘Hard Rea-Time
Scheduling: The Deadline Monotonic Approach’’, Proceedings 8th IEEE Workshop on
Real-Time Operating Systems and Software, Atlanta, USA (15-17 May 1991).

3. J A.Bannister and K. S. Trivedi, ‘‘ Task Allocation in Fault-Tolerant Distributed Systems’”,
Acta Informatica 20, pp. 261-281 (1983).

4, S. Wayne Bollinger and Scott F. Midkiff, ‘‘Heuristic Technique for Processor and Link
Assignment in Multicomputers”’, |EEE Transactions on Computers 40, pp. 325-333 (March
1991).

5. A. Burns, ‘‘Scheduling Hard Real-Time Systems: A Review'’, Software Engineering
Journal 6(3), pp. 116-128 (1991).

6. G. Chen and J. Yur, ‘‘A Branch-and-Bound-with-Underestimates Algorithm for the Task
Assignment Problem with Precedence Constraint’”’, 10th International Conference on
Distributed Computing Systems, pp. 494-501 (1990).

7. Chu, WW. and Lan, L.M., *“Task allocation and precedence relations for distributed real-
time systems’’, |EEE Transactions on Computers A02, pp. 667-79, |EEE Trans. Comput.
(USA) (June 1987).

8. A.Damm, J. Reisinger, W. Schwabl and H. Kopetz, ‘‘ The Rea-Time Operating System of

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

-13-

MARS"’, ACM Operating Systems Review 23(3 (Special Issue)), pp. 141-15 (1989).

Houstis, C.E., ‘*“Module allocation of real-time applications to distributed systems’”, IEEE
Transactions on Software Engineering 16(7), pp. 699-709, |EEE Trans. Softw. Eng. (USA)
(July 1990).

S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, ‘‘Optimisation by Simulated Annealing’’,
Science(220), pp. 671-680 (1983).

P. J. M. Laarhoven and E. H. L. Aarts, Smulated Annealing: Theory and Applications, D.
Reidel Publishing (1987).

J. Lehoczky, L. Sha and Y. Ding, ‘‘The Rate Monotonic Scheduling Algorithm: Exact
Characterisation and Average Case Behaviour’’, Proceedings of the Real-Time Systems
Symposium (1989).

J. Y. T. Leung and J. Whitehead, ‘*On The Complexity of Fixed-Priority Scheduling of
Periodic Real-Time Tasks’, Performance Evaluation, pp.237-250 (Vol. 2, Part 4, Dec
1982).

C. L. Liu and J. W. Layland, ‘‘ Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment’’, Journal of the ACM 20(1), pp. 46-61 (1973).

C. C. Price and M. A. Salama, ‘‘Scheduling of Precedence-Constrained Tasks on
Multiprocessors’, The Computer Journal 33(3), p. 219 (1990).

N. Radcliffe and G. Wilson, ‘*Natural Solutions Give Their Best’’, New Scientist, pp. 47-50
(24th April 1990).

K. Ramamritham, ‘‘Allocation and Scheduling of Complex Periodic Tasks’, 10th
International Conference on Distributed Computing Systems, pp. 108-115 (1990).

Pierre Roussel-Ragot and Gerard Dreyfus, ‘‘A Problem Independent Parallel
Implementation of Simulated Annealing: Models and Experiments”’, |EEE Transactions on
Computer-Aided Design 9(8) (August 1990).

K. Tindell, **Allocating Real-Time Tasks (An NP-Hard Problem made Easy)’’, YCS 149,
Department of Computer Science, University of York (December 1990).

V. Varbosa and M. C. Boeres, ‘‘An occam based evaluation of a paralel version of
Simulated Annealing’’, Microprocessing and Microprogramming, pp. 85-92, Euromicro ' 90
(1990).

APPENDIX 1: AN EXAMPLE RUN

This section describes an example run of a task alocation program giving a good fina solution,
and indicates how the result was obtained. The quality of the result is discussed, and an illustration
of theflexibility and power of the approach is given.

In order to illustrate the algorithm a specific task allocation problem is required. The table below
shows an example task set, consisting of 42 tasks, including five paired replicas.

-14-
Task | Period | WCET | Memory Messages Location

0 60 4 3000 50-1,150-2 0

1 60 4 1500 60-3,70-4,30-5

2 60 2 1200 20-3

3 60 2 1700 1

4 60 2 3000 60- 6

5 60 4 3000 80-6

6 60 6 1100 2

7 35 2 500 40-.8 1

8 35 2 700 1

9 35 8 900 90-11 0
10 35 14 2200 25011
11 35 4 1000 1
12 14 2 1000 150- 13,150 14 2
13 14 2 1500 5015
14 14 2 1600 50-15
15 14 2 1300 3
16 14 2 1100 5017 3
17 14 2 1000 2
18 35 1 1000 50-19 1
19 35 1 1600 1
20 14 1 1900 40-21
21 14 2 2000 3
22 14 1 1000 40-.23
23 14 1 2000 40-,24
24 14 1 1000 20-25
25 14 1 2000 20-.26
26 14 2 7000 20-27,20-.28
27 14 1 1100 50-29
28 14 1 900 30-29
29 14 1 500 6
30 14 1 600 50-31 7
31 14 2 800 70-32
32 14 2 1300 7
33 20 3 1000 50-35 23
34 20 2 1000 50-35 0,1
35 20 2 1000 60- 36,60 37
36 20 2 1000 6,7
37 20 2 1000
38 20 3 1000 50-40 23
39 20 2 1000 5040 0,1
40 20 2 1000 60-,41,60- 42
41 20 2 1000 6,7
42 20 2 1000 6,7

The table shows the periods and WCET (worst-case execution time) for each task, along with the

-15-

memory required (in bytes) and the messages sent between tasks. The entry "60- 41,60 - 42"
indicates messages of 60 bytes sent to tasks 41 and 42. The fina column in the table shows any
location constraints — task 33 (for example) must be located on either processor 2 or processor 3.

There are 8 processors in the system, with equal execution speeds, and with the following memory
capacities:

Processor | Capacity

10000
10000
10000
12000

7000

7000
12000
10000

~No ok~ WNPEP O

The following tasks must avoid each other (they are replicas):

Tasks 33 and 38
Tasks 34 and 39
Tasks 35 and 40
Tasks 36 and 41
Tasks 37 and 42

The first step in applying the agorithm is to choose the start temperature and the weights on the
energy components — these can all be chosen by ‘rules of thumb’. The start temperature chosen is
65536, and the weights chosen are:

kq=15777.3
kp=117.4
ks=10
k,=12.4

It should be pointed out that the values of the weights are fairly arbitrary (the algorithm is not very
sensitive to the value of the weights), and were chosen so that hard constraint components return
similar values, and that the soft constraint component returns lower values.

Firstly, a random allocation is chosen. The table below shows the allocation, and adopts the
following notation: The first row indicates the processor number, and the numbers underneath each
processor are the tasks allocated to that processor, listed in priority order. The ‘*’ symbol by a
task indicates that the task is unschedulable.

-16-

14* 13* 12* 16* 35% 22* 30*
20* 39* 26* 24* 40* 29 10*
25% 7 27* 31* 37 32*
28* 8 33* 15 4 36*
34* 11 38* 21 41*

9* 18 17 1 42*
23* 19 6 5 2%

0* 3
Processor 0: processing utilisation 82.4% nenory utilisation 133.0%
Processor 1: processing utilisation 56.2% nenory utilisation 90.0%
Processor 2: processing utilisation 90.0% nenory utilisation 132.0%
Processor 3: processing utilisation 77.6% nenory utilisation 89.2%
Processor 4: processing utilisation 0.0% nenory utilisation 0.0%
Processor 5: processing utilisation 33.3% nenory utilisation 47.1%
Processor 6: processing utilisation 14.3% nenory utilisation 12.5%
Processor 7: processing utilisation 94.8% nenory utilisation 83.0%

TRT=23. 4nms, bus speed=90 bytes/nms, bus utilisation=96.2%

The token rotation time based upon the peak load is 23.4 ms (of course, some tasks could execute
more than once in this time, increasing the pesk load — we ignore this aspect since for a
schedulable system TRT must be less than the periods of tasks using the bus). The bus utilisation is
96%.

There are three replica clashes: 33 and 38, 35 and 40, and 36 and 41, giving a replica penalty of 6
(33“sees 38asaclash, and 38 ‘sees' 33 as aclash, so each pair is counted twice).

The system is unschedulable (due mostly to a TRT of 23.4 ms), and processors 0 and 2 have
memory utilisations of approximately 132%. The total energy for this alocation is 447618. The
next step in the annealing algorithm is to apply the neighbour function. The neighbour function
needs to decide whether to apply a task move, or to swap two tasks (for this example we set the
probability of using swaps to 0.15). Let’'s assume that a move is chosen. The neighbour function
randomly picks a task: task 22. This task can be placed on any processor, and one is randomly
chosen: processor 1. The new allocation looks like this:

-17-

14* 13* 12* 16* 35* 29 30*
20* 22* 26* 24* 40* 10*
25% 39* 27* 31* 37 32*
28* 7 33* 15 4 36*
34* 8 38* 21 41*
9* 11 17 1 42*
23* 18 6 5 2%
0* 19
3
Processor 0: processing utilisation 82.4% nenory utilisation 133.0%
Processor 1: processing utilisation 63.3% nenory utilisation 100.0%
Processor 2: processing utilisation 90.0% nenory utilisation 132.0%
Processor 3: processing utilisation 77.6% nenory utilisation 89.2%
Processor 4: processing utilisation 0.0% nenory utilisation 0.0%
Processor 5: processing utilisation 33.3% nenory utilisation 47.1%
Processor 6: processing utilisation 7.1% nenory utilisation 4.2%
Processor 7: processing utilisation 94.8% nenory utilisation 83.0%

TRT=23. 4ns, bus speed=90 bytes/ns, bus utilisati on=96.2%

Task 22 has increased the load on processor 1 which makes tasks of lower priority less schedulable
(in particular, the deadline of task 39 is missed by a larger amount). Task 22 still needs to send
messages on the bus, so there is no change in the peak load and hence TRT. The total energy for

this alocation is 450620 (leading to an increase in energy of 3002. At the current temperature of
Eoid — Enew
65536 the expresson e T evauates to 0.96, giving a 0.96 chance of the jump being
accepted. Assume that the jump is taken (no further action is required). Now assume the neighbour
function decides to swap two tasks, and picks tasks 10 and 23. The following allocation is

produced:

-18-

14* 13* 12* 16* 35% 29 23*

20* 22* 26* 24* 40* 30*

25% 39* 27* 31* 37 32

28* 7 33* 15 4 36

34* 8 38* 21 41

9* 11 17 1 42

10* 18 6 5 2

0* 19

3

Processor 0: processing utilisation 115.2% nenory ut sation 135.0%
Processor 1: processing utilisation 63.3% nenory utilisation 100.0%
Processor 2: processing utilisation 90.0% nenory u sation 132. 0%
Processor 3: processing utilisation 77.6% nenory ut sation 89.2%
Processor 4: processing utilisation 0.0% nenory utilisation 0.0%
Processor 5: processing utilisation 33.3% nenory utilisation 47.1%
Processor 6: processing utilisation 7.1% nenory utilisation 4.2%
Processor 7: processing utilisation 61.9% menory ut sation 81.0%

TRT=24. 2ns, bus speed=90 bytes/ms, bus utilisation=101.2%

The energy for this point is 490606, resulting in an increase in energy of 39986, and the chance of
taking thisjumpis 0.54.

A number of these jumps are proposed at each temperature. The temperature is reduced when a
fixed number of downward jumps have been made, or when an upper limit on the number of
proposed jumps is reached. In this example, the temperature is reduced after 50 jumps have been
made, or atotal of 1000 jumps have been proposed. The following shows the pattern of jumps for
the current temperature:

" =yy===v="=="" == ====y="yy===v=y" ==v" " ==- - - " ====y==y=yy====-="==
--=-"===="===="y v==="v " " ===="=y===v-yy==="v
=v-v-=="y===yyy===="-y" =" ==y====y" =" =y===y=" =====" =y====y=y====
vv=y==vy-"=="-===zy==y" "y====zy===""=-==y=-="-y " - ====" ==y======" ===
====y" " " =="=====. ===. ==yy=-=="=v

o~y

The ‘v’ symbol indicates that a downward (energy reducing) jump was taken. The ‘™~ symbol
indicates that an upward jump was taken. The ‘=" symbol indicates that a jump to an alocation
with an equal energy wastaken. The‘—' symbol indicates that a jump was proposed but refused.

As can be seen from above, few jumps are refused at this temperature, and the algorithm examines
many allocations. As the temperature is lowered this ability is reduced. The value of a in this
example is 0.95, and the temperature reduces slowly. The following shows the pattern of jumps for
the temperature 9332:

-19-

======- - TS SIS T - TS- “<“l -z====- ST T T DT ”<”) ==- <<”“l =
v=="=="========="=====. . " ==y====vy- =" ==y- ==- - "y- ===" - ==- zy===""==
=y" =====" ====z=y==- =yy- ===- =y===- - === ==_ ==_ y==- y==-===- "=y " - ===" =
--="==="z==zy====-======y - =" ==y=-=="="===- =- - ==y-y-===-==" - ===-vy
" =y=- ====-==-=- - =-"==- - == ==yV=V- =====- ==V=- - V- =- =- =- - =" - - ===- ==
—-===" .= ..o y==-z=zyzoy- = =y o=- = - o s s === ===y === ==
- - ===zy=zy===z=V- ==- == ====y=z=VyV-==-"-"y-===- - - ====-=zy " - -==="=- ==
=--""=-=-===-."===.=.========-." =====y" - y=" =- ====- =- ==- =-"y===vy=
=y =====-=- =y
As can be seen, many more proposed jumps are being rejected, and a much larger number of trials
are required before 50 downward jumps are made. A typical allocation at this temperature is given
below:
o 1 2 3 4 5 6 7
39 34 13* 16* 24 22 29 20
9 7 14* 26* 4 28* 40 25*
1 8 2738 5 35 41 23
2 10 33* 15 37 42 30
0 11 12 21 31
18 17 32
19 6 36
3
Processor 0: processing utilisation 49.5% nenory utilisation 76.0%
Processor 1: processing utilisation 81.9% nenory utilisation 97.0%
Processor 2: processing utilisation 89.3% nenory utilisation 83.0%
Processor 3: processing utilisation 72.1% nenory utilisation 103. 3%
Processor 4: processing utilisation 17.1% nenory utilisation 61.4%
Processor 5: processing utilisation 34.3% nenory utilisation 55.7%
Processor 6: processing utilisation 37.1% nenory utilisation 29.2%
Processor 7: processing utilisation 67.1% nenory utilisation 96.0%

TRT=12. 9ns, bus speed=90 bytes/ns, bus utilisation=51.6%

The energy for this allocation is 25435. As can be seen, only one processor now has a memory
utilisation of greater than 100%, and more tasks are schedulable. Also, replicas are placed on
different processors.

At atemperature of 1717 few jumps are being taken:

At a final temperature of 28 no upward or downward jumps have been made for 4000 proposed
jumps and the final allocation, with an energy of 3403, is shown below:

=" y--===== ==- ==- . ==y=- ==Vy=- ===-=-===="==-=

-20-

35 39 13 16 25 26 30
34 7 14 38 22 27 31
37 8 33 15 23 28 32

9 10 12 20 24 29 40

1 11 17 21 36 41

2 18 6 5 42

4 19

0o 3
Processor 0: processing utilisation 72.9% nenory i sation 99.0%
Processor 1: processing utilisation 81.9% nenory sation 97.0%
Processor 2: processing utilisation 82.1% nenory i sation 72.0%
Processor 3: processing utilisation 71.7% nenory u sation 85.8%
Processor 4: processing utilisation 28.6% nenory ut sation 85. 7%
Processor 5: processing utilisation 0.0% nenory utilisation 0.0%
Processor 6: processing utilisation 45.7% nenory utilisation 87.5%
Processor 7: processing utilisation 65.7% nenory utilisation 57.0%

TRT=8. 7ms, bus speed=90 bytes/ns, bus utilisation=29.4%

As can be seen, all the hard constraints have been met, and the bus utilisation is low. Interestingly,
the solution has a structure to it: communicating subsystems are clustered together to minimise bus
traffic and to increase schedulability. For example, tasks 22, 23, 24, 25, 27, 27, 28, and 29 are all
related. Tasks 26, 27, 28, and 29 are clustered on processor 6 (task 29 is forced to reside on
processor 6), and tasks 22, 23, 24, and 25 are clustered on processor 4. Only one message in the
subsystem is sent on the bus: task 25 sends a message to task 26; all other messages arelocal. The
whole subsystem would not fit on processor 6, and the best place to split the subsystem is between
tasks 25 and 26 (other splits would require more communication on the bus).

As has been mentioned before, the annealing algorithm is very flexible and changes can be
accommodated easily. A small change to the annealing program (just a few lines) was made to
change the soft constraint to balance the processor utilisation between the used processors instead
of minismising bus traffic (it could be argued that a ‘balanced’ alocation gives better tolerance to
execution time over-runs). At a bus speed of 90 bytes/msec many of the well-balanced allocations
result in infeasible solutions (since a high bus utilisation gives a high TRT, resulting in less
schedulable alocations). To illustrate the potentia of the algorithm the program was run on a
problem with a faster bus. The following alocation was produced:

34 28
39

o ©
~

11
18
19

Processor
Processor
Pr ocessor
Processor
Processor
Pr ocessor
Processor
Processor

12
38
17

0
1
2:
3:
4
5
6
7

16 40
33 10
15 5
21

processi
processi
processi
processi
processi
processi
processi
processi

13
14
20
35
37

ng
ng
ng
ng
ng
ng
ng
ng

-21-

26
31
27
29
41

util
util
util
util
util
util
util
util

25
30
23
32
36
42

sati
sati
sati
sati
sati
sati
sati
sati

on
on
on
on
on
on
on
on

53

56

55

TRT=7.9ms, bus speed=250 bytes/ns, bus

. 3%
56.

2%

. 9%
57.
56.
55.
56.

9%
%
%
2%

L T%

menory
menory
menory
menory
menory
menory
menory
menory

util
util
util
util
util
util
util
util

sati
sati
sati
sati
sati
sati
sati
sati

utilisation=91. 3%

on
on
on
on
on
on
on
on

This alocation is feasible — all tasks are schedulable, al processors have memory utilisations
< 100%, and replicas are on different processors. The average processor utilisation is 56%.

74. 0%
94. 0%
44. 0%
45. 0%
88. 6%
100. 0%
96. 7%
79. 0%

