CHAPTER

3

TASK ASSIGNMENT
AND SCHEDULING

3.1 INTRODUCTION

The purpose of real-time computing is to execute, by the appropriate deadlines,
its critical control tasks. In this chapter, we will look at techniques for allocating
and scheduling tasks on processors to ensure that deadlines are met.

There is an enormous literature on scheduling: indeed, the field appears to
have grown exponentially since the mid-1970s! We present here the subset of the
results that relates to the meeting of deadlines.

The allocation/scheduling problem can be stated as follows. Given a set
of tasks, task precedence constraints, resource requirements, task characteristics,
and deadlines, we are asked to devise a feasible allocation/schedule on a given
computer. Let us define some of these terms.

Formally speaking, a task consumes resources (€.g., processor time, memory,
and input data), and puts out one or more results. Tasks may have precedence
constraints, which specify if any task(s) needs to precede other tasks. If task 7;’s
output is needed as input by task 7j, then task 7; is constrained to be preceded
by task T;. The precedence constraints can be most conveniently represented by
means of a precedence graph. We show an example of this in Figure 3.1. The
arrows indicate which task has precedence over which other task. We denote the
precedent-task set of task 7' by < (7'); that is, < (T) indicates which tasks must
be completed before 7' can begin.

i " .

TASK ASSIGNMENT AND SCHEDULING 41

Y
|

73

FIGURE 3.1
Ty Example of a precedence graph.

Example 3.1. In Figure 3.1, we have

<=M =0

< 2) ={1}

< (3) ={1}

<@ =11

< (5) = {1.2.3} G.1)
< (6) ={1,3,4)

< (7) ={1,3,4, 6}
< (8) ={1,3,4,6,7}

We can also write i < j to indicate that task 7; must precede task 7T;.
(We can also express this by j > i). Commonly, for economy of representation,
we only list the immediate ancestors in the precedence set; for example, we can
w;ite < (5) = {2,3} since < (2) = {1}. The precedence operator is transitive.
That is,

i<j and j<k =i<k

In some cases, > and < are used to denote which task has higher priority; that is,
[> j can mean that 7; has higher priority than 7;. The meaning of these symbols
should be clear from context.

Each task has resource requirements. All tasks require some execution time
on a processor. Also, a task may require a certain amount of memory or access to
a bus. Sometimes, a resource must be exclusively held by a task (i.e., the task must
have sole possession of it). In other cases, resources are nonexclusive. The same
physical resource may be exclusive or nonexclusive depending on the operation
to be performed on it. For instance, a memory object (or anything else to which
writing is not atomic) that is being read is nonexclusive. However, while it is
being written into, it must be held exclusively by the writing task.

The release time of a task is the time at which all the data that are required
to begin executing the task are available, and the deadline is the time by which the
task must complete its execution. The deadline may be hard or soft, depending
on the nature of the corresponding task. The relative deadline of a task is the
absolute deadline minus the release time. That is, if task 7; has a relative deadline

42 REAL-TIME SYSTEMS

d; and is released at time 7, it must be executed by time 7 + d;. The absolute
deadline is the time by which the task must be completed. In this example, the
absolute deadline of 7; is T + d;.

A task may be periodic, sporadic, or aperiodic. A task T} is periodic if it is
released periodically, say every P; seconds. P; is called the period of task T;. The
periodicity constraint requires the task to run exactly once every period; it does
not require that the tasks be run exactly one period apart. Quite commonly, the
period of a task is also its deadline. The task is sporadic if it is not periodic, but
may be invoked at irregular intervals. Sporadic tasks are characterized by an upper
bound on the rate at which they may be invoked. This is commonly specified by
requiring that successive invocations of a sporadic task 7; be separated in time by
at least 7 (i) seconds. Sporadic tasks are sometimes also called aperiodic. However,
some people define aperiodic tasks to be those tasks which are not periodic and
which also have no upper bound on their invocation rate.

Example 3.2. Consider a pressure vessel whose pressure is measured every 10 ms.
If the pressure exceeds a critical value, an alarm is sounded. The task that measures
the pressure is periodic, with a period of 10 ms. The task that turns on the alarm is
sporadic. What is the maximum rate at which this task can be invoked?

A task assignment!/schedule is said to be feasible if all the tasks start after
their release times and complete before their deadlines. We say that a set of tasks
is A-feasible if an assignment/scheduling algorithm A, when run on that set of
tasks, results in a feasible schedule. The bulk of the work in real-time scheduling
deals with obtaining feasible schedules.

Given these task characteristics and the execution times and deadlines asso-
ciated with the tasks, the tasks are allocated or assigned to the various processors
and scheduled on them. The schedule can be formally defined as a function

S: Set of processors x Time — Set of tasks (3.2)

S(i, t) is the task scheduled to be running on processor i at time #. Most of the
time, we will depict schedules graphically.

A schedule may be precomputed (offline scheduling), or obtained dynami-
cally (online scheduling). Offline scheduling involves scheduling in advance of the
operation, with specifications of when the periodic tasks will be run and slots for
the sporadic/aperiodic tasks in the event that they are invoked. In online schedul-
ing, the tasks are scheduled as they arrive in the system. The algorithms used in
online scheduling must be fast; an online scheduling algorithm that takes so long
that it leaves insufficient time for tasks to meet their deadlines is clearly useless.

The relative priorities of tasks are a function of the nature of the tasks
themselves and the current state of the controlled process. For example, a task
that controls stability in an aircraft and that has to be run at a high frequency

'In this book, we will use the terms “task allocate” and “task assign” interchangeably.

TASK ASSIGNMENT AND SCHEDULING 43

can reasonably be assigned a higher priority than one that controls cabin pressure.
Also, a mission can consist of different phases or modes and the priority of the
same task can vary from one phase to another.

Example 3.3. The flight of an aircraft can be broken down into phases such as
takeoff, climb, cruise, descend, and land. In each phase, the task mix, task priorities,
and task deadlines may be different.

There are algorithms that assume that the task priority does not change within
a mode; these are called static-priority algorithms. By contrast, dynamic-priority
algorithms assume that priority can change with time. The best known examples
of static- and dynamic-priority algorithms are the rate-monotonic (RM) algorithm
and the earliest deadline first (EDF) algorithm, respectively. We shall discuss each
in considerable detail.

The schedule may be preemptive or nonpreemptive. A schedule is preemp-
tive if tasks can be interrupted by other tasks (and then resumed). By contrast,
once a task is begun in a nonpreemptive schedule, it must be run to completion or
until it gets blocked over a resource. We shall mostly be concerned with preemp-
tive schedules in this book—wherever possible, critical tasks must be allowed to
interrupt less critical ones when it is necessary to meet deadlines.

Preemption allows us the flexibility of not committing the processor to run
a task through to completion once we start executing it. Committing the processor
in a nonpreemptive schedule can cause anomalies.

Exampie 3.4. Consider a two-task system. Let the release times of tasks 77 and 7>
be 1 and 2, respectively; the deadlines be 9 and 6; and the execution times be 3.25
and 2. Schedule §, in Figure 3.2 meets both deadlines. However, suppose we follow
the perfectly sensible policy of not keeping the processor idle whenever there is a
task waiting to be run; then, we will have schedule S,.

This results in task 7, missing its deadline!

task 2 deadline
T, | Ty

| T | no]

‘ Ty T, ‘ T ‘
T T T I Y T H N T S SN A NN S N NN SO ST A NN
0 1 2 3 4 5 6 7

Time

FIGURE 3.2

Preemptive and nonpreemptive schedules. .

44 REAL-TIME SYSTEMS

Notice that for schedule S, to have been implemented in the first place, we
must have had some notion when 7; arrived at time 1 that task 7, would be on its
way, and that its deadline would be too tight to allow task 7 to complete ahead of it.

By contrast, S3 is a preemptive schedule. When 7} is released, it starts exe-
cuting. When 7 arrives, 7; is preempted and run to completion, thus meeting its
deadline. Then T resumes from where it left off and also meets its deadline.

There is, however, a penalty associated with preemption. In order to allow a
task to resume correctly, some housekeeping chores must be done by the system.
The register values must be saved when a task is preempted and then restored
when it resumes. Preemption is not always possible. For example, consider a
disk system in the middle of writing a sector. It cannot simply abort its current
operation—it must carry through to completion or the affected sector will not be
consistent.

The vast majority of assignment/scheduling problems on systems with more
than two processors are NP-complete. We must therefore make do with heuristics.
Most heuristics are motivated by the fact that the uniprocessor scheduling (i.e.,
scheduling a set of tasks on a single processor) problem is usually tractable. The
task of developing a multiprocessor schedule is therefore divided into two steps:
first we assign tasks to processors, and second, we run a uniprocessor scheduling
algorithm to schedule the tasks allocated to each processor. If one or more of the
schedules turn out to be infeasible, then we must either return to the allocation
step and change the allocation, or declare that a schedule cannot be found and
stop. One example of this process is summarized in Figure 3.3. Many variations
of this approach are possible; for example, one can check for schedulability after
the allocation of each task.

3.1.1 How to Read This Chapter

This chapter is long and potentially intimidating. Many of the algorithms we
cover have fairly involved proofs. For those of you interested only in checking
if this chapter contains an algorithm that meets your immediate needs, and not
interested in all the associated mathematical trappings, we summarize below the
key features of the algorithms covered here. Simply go through the list, turn to
the detailed algorithm description, and skip all the proofs. If, on the other hand,
you are interested in the proof techniques used in scheduling theory, you will find
many good examples here.

UNIPROCESSOR SCHEDULING ALGORITHMS.* As shown in Figure 3.3, uni-
processor scheduling is part of the process of developing a multiprocessor sched-
ule. Our ability to obtain a feasible multiprocessor schedule is therefore linked to
our ability to obtain feasible uniprocessor schedules. Most of this chapter deals
with this problem.

Traditional rate-monotonic (RM): The task set consists of periodic, pre-
emptible tasks whose deadlines equal the task period. A task set of n tasks is
schedulable under RM if its total processor utilization is no greater than @z,

TASK ASSIGNMENT AND SCHEDULING 45

Make an
allocation

|

Schedule each processor
based on the allocation

Change
Are all these allocation
schedules feasible?
Output Check stopping| _continue
schedule criterion
stop
Declare FIGURE 3.3
failure Developing a multiprocessor
schedule.

Tas.k priorities are static and inversely related to their periods. RM is an optimal
static-priority uniprocessor scheduling algorithm and is very popular. Some results

are also available for the case where a task deadline does not equal its period.
See Section 3.2.1.

Rate—monotonic deferred server (DS): This is similar to the RM algorithm,
except t.hat it can handle both periodic (with deadlines equal to their periods) and
aperiodic tasks. See Section 3.2.1 (in Sporadic Tasks).

: Earliest deadline first (EDF): Tasks are preemptible and the task with the
garhest deadline has the highest priority. EDF is an optimal uniprocessor algo-
rithm. If a task set is not schedulable on a single processor by EDF, there is no
other processor that can successfully schedule that task set. See Section 3.2.2.

Precedence and exclusion conditions: Both the RM and EDF algorithms
assume that the tasks are independent and preemptible anytime. In Section 3.2.3,
We present algorithms that take precedence conditions into account. Algorithms
with exclusion conditions (i.e., certain tasks are not allowed to interrupt certain
other tasks, irrespective of priority) are also presented.

. Mu?tiple task versions: In some cases, the system has primary and alterna-
tive versions of some tasks. These versions vary in their execution time and in
the quality of output they provide. Primary versions are the full-fledged tasks,
providing top-quality output. Alternative versions are bare-bones tasks, providing
10Wer-quality (but still acceptable) output and taking much less time to execute.
If_ t.he system has enough time, it will execute the primary; however, under con-
filtlons of overload, the alternative may be picked. In Section 3.2.4, an algorithm
1S provided to do this.

46 REAL-TIME SYSTEMS

IRIS tasks: IRIS stands for increased reward with increased service. Many
algorithms have the property that they can be stopped early and still provide useful
output. The quality of the output is a monotonically nondecreasing function of
the execution time. Iterative algorithms (e.g., algorithms that compute 7 or e) are
one example of this. In Section 3.3, we provide algorithms suitable for scheduling
such tasks.

MULTIPROCESSOR SCHEDULING. Algorithms dealing with task assignment to
the processors of a multiprocessor are discussed in Section 3.4. The task assign-
ment problem is NP-hard under any but the most simplifying assumptions. As a
result, we must make do with heuristics.

Utilization balancing algorithm: This algorithm assigns tasks to processors
one by one in such a way that at the end of each step, the utilizations of the
various processors are as nearly balanced as possible. Tasks are assumed to be
preemptible.

Next-fit algorithm: The next-fit algorithm is designed to work in conjuction
with the rate-monotonic uniprocessor scheduling algorithm. It divides the set of
tasks into various classes. A set of processors is exclusively assigned to each task
class. Tasks are assumed to be preemptible.

Bin-packing algorithm: The bin-packing algorithm assigns tasks to proces-
sors under the constraint that the total processor utilization must not exceed a
given threshold. The threshold is set in such a way that the uniprocessor schedul-
ing algorithm is able to schedule the tasks assigned to each processor. Tasks are
assumed to be preemptible.

Myopic offline scheduling algorithm: This algorithm can deal with nonpre-
emptible tasks. It builds up the schedule using a search process.

Focused addressing and bidding algorithm: In this algorithm, tasks are as-
sumed to arrive at the individual processors. A processor that finds itself unable
to meet the deadline or other constraints of all its tasks tries to offload some of its
workload onto other processors. It does so by announcing which task(s) it would
like to offload and waiting for the other processors to offer to take them up.

Buddy strategy: The buddy strategy takes roughly the same approach as the
focused addressing algorithm. Processors are divided into three categories: under-
loaded, fully loaded, and overloaded. Overloaded processors ask the underloaded
processors to offer to take over some of their load.

Assignment with precedence constraints: The last task assignment algorithm
takes task precedence constraints into account. It does so using a trial-and-error
process that tries to assign tasks that communicate heavily with one another to
the same processor so that communication costs are minimized.

CRITICAL SECTIONS. Certain anomalous behavior can be exhibited as a result
of critical sections. In particular, a lower-priority task can make a higher-priority
task wait for it to finish, even if the two are not competing for access to the
same critical section. In Section 3.2.1 (in Handling Critical Sections), we present

TASK ASSIGNMENT AND SCHEDULING 47

algorithms to get around this problem and to provide a finite upper bound to the
period during which a lower-priority task can block a higher-priority task.

MODE CHANGES. Frequently, task sets change during the operation of a real-
time system. We have seen in Chapter 2 that a mission can have multiple phases,
each phase characterized by a different set of tasks, or the same task set but with
different priorities or arrival rates. In Section 3.5, we discuss the scheduling issues
that arise when a mission phase changes. We look at how to delete or add tasks
to the task list.

FAULT-TOLERANT SCHEDULNG. The final part of this chapter deals with the
important problem of ensuring that deadlines will continue to be met despite
the occurrence of faults. In Section 3.6, we describe an algorithm that schedules
backups that are activated in the event of failure.

3.1.2 Notation

The notation used in this chapter will be as follows.

n Number of tasks in the task set.

e Execution time of task T;.

P; Period of task T;, if it is periodic.

I; kth period of (periodic) task T; begins at time [; + (k — 1)P;, where
I; is called the phasing of task T;.

d; Relative deadline of task 7; (relative to release time).

D; Absolute deadline of task T;

T Release time of task 7;

hr (1) Sum of the execution times of task iterations in task set 7T that have

their absolute deadlines no later than z.

Additional notation will be introduced as appropriate.

3.2 CLASSICAL UNIPROCESSOR
SCHEDULING ALGORITHMS

In this section, we will consider two venerable algorithms used for scheduling in-
dependent tasks on a single processor, rate-monotonic (RM) and earliest deadline
first (EDF). The goal of these algorithms is to meet all task deadlines. Follow-
ing that, we will deal with precedence and exclusion constraints, and consider
situations where multiple versions of software are available for the same task.
The following assumptions are made for both the RM and EDF algorithms.

Al. No task has any nonpreemptable section and the cost of preemption is neg-
ligible.

48 REAL-TIME SYSTEMS

A2. Only processing requirements are significant; memory, 1/0, and other re-
source requirements are negligible.

A3. All tasks are independent; there are no precedence constraints.

These assumptions greatly simplify the analyses of RM and EDF. Assumption Al
indicates that we can preempt any task at any time and resume it later without
penalty. As a result, the number of times that a task is preempted does not change
the total workload of the processor. From A2, to check for feasibility we only
have to ensure that enough processing capacity exists to execute the tasks by
their deadlines; there are no memory Or other constraints to complicate matters,
The absence of precedence constraints, A3, means that task release times do not
depend on the finishing times of other tasks.

Of course, there are also many systems for which assumptions Al to A3
are not good approximations. Later in this chapter, we will see how to deal with
some of these.

321 Rate-Monotonic Scheduling Algorithm

The rate-monotonic (RM) scheduling algorithm is one of the most widely studied
and used in practice. It is a uniprocessor static-priority preemptive scheme. Except
where it is otherwise stated, the following assumptions are made in addition to
assumptions Al to A3.

Ad. All tasks in the task set are periodic.
AS5. The relative deadline of a task is equal to its period.

Assumption A5 simplifies our analysis of RM greatly, since it ensures that there
can be at most one iteration of any task alive at any time.
The priority of a task is inversely related to its period; if task 7; has a

smaller period than task 7j, T; has higher priority than Tj. Higher-priority tasks
can preempt lower-priority tasks.

Example 3.5. Figure 3.4 contains an example of this algorithm. There are three
tasks, with P, = 2, P, = 6, P53 = 10. The execution times are €1 = 0.5, =
20,es=175and ; =0, = 1,I; =3.Since P < P, < P5, task T has highest
priority. Every time it is released, it preempts whatever is running on the processor:
Similarly, task T3 cannot execute when either task T or T is unfinished.

[(n] [= TR

(| P Y U R I T T S (N [

0 1 2 3 4 5 6 7 8
Time

FIGURE 3.4

Example of the RM algorithm; K denotes the jth release (or iteration) of Task Tk.

TASK ASSIGNMENT AND SCHEDULING 49

1.0 /r—l/—r I [[
09 —
L e _|
E 08 _
f25] — |
o l
0 2] 4 6 8 10 12 14 16
Number of tasks
FIGURE 3.5

Utilization bound for the RM algorithm.

There is an easy schedulability test for this algorithm, as follows:

If the total utilization of the tasks is no greater than n(2'/" — 1), where n is
the number of tasks to be scheduled, then the RM algorithm will schedule
all the tasks to meet their respective deadlines. Note that this is a sufficient,
but not necessary, condition. That is, there may be task sets with a utilization
greater than n(2Y/" — 1) that are schedulable by the RM algorithm.

The n(2!/* — 1) bound is plotted in Figure 3.5.

Let us now turn to determining the necessary and sufficient conditions for
RM.-schedulability. To gain some intuition into what these conditions are, let
ui c;egermine them from first principles for the three-task example in Exam-
RIe3LS.

Assume that the task phasings are all zero (i.e., the first iteration of each
ta_sk is released at time zero). Observe the first iteration of each task. Let us start
with task 77. This is the highest-priority task, so it will never be delayed by any
other _task in the system. The moment 7 is released, the processor will interrupt
anything else it is doing and start processing it. As a result, the only condition
Ell}}?t must be satisfied to ensure that 77 can be feasibly scheduled is that e; < Pi.

is is clearly a necessary, as well as a sufficient, condition.
o 61:1121\17\7, hth[rn to task 7». It will be executed spccessful}y if its first iteration can
o iteratioi ; Ol;nte Ever [0, P,]. Suppose T, finishes at t1m§ t. The total number
o ask T; that have bgen r§1eased over [0, t] is [t/ Eﬂ. In order for
B a dtt every one of the iterations Qf task .Tl released in [0, ¢] must be
e S’a gn n addltlo.n. there must be e, time available to execute 7>. That is,
sfy the condition:
t
= [Fl—‘ el + e

If we ¢
N?)n find some 7 € [0, P,] satisfying this condition, we are done.
W comes the practical question of how we check that such a ¢ exists.

After a o
: 1, every interval has an infinite number of points in it, so we can’t very

50 RrEAL-TIME SYSTEMS

well check exhaustively for every possible 7. The solution lies in the fact that
[7/P1] only changes at multiples of Pj, with jumps of e;. So, if we show that
there exists some integer k such that kP; > ke, + ey and kP, < P,, we have
met the necessary and sufficient conditions for 75 to be schedulable under the
RM algorithm. That is, we only need to check if 1 > [t/Pi]le; + e, for some
value of ¢ that is a multiple of Pj, such that r < P,. Since there is a finite
number of multiples of P; that are less than or equal to P, we have a finite
check.

Finally, consider task 73. Once again, it is sufficient to show that its first
iteration completes before Ps. If 75 completes executing at 7, then by an argument
identical to that for 7>, we must have:

b= = e+ e+
=|—= —Jles+e
P | T lete

T3 is schedulable iff there is some ¢ € [0, P;] such that the above condition is
satisfied. But, the right-hand side (RHS) of the above equation has jumps only at
multiples of P; and P. It is therefore sufficient to check if the inequality

t t
t>| = —
> "Pl]el—k(&—‘ez—f—@

is satisfied for some ¢ that is a multiple of P; and/or P,, such that t < Ps.
We are now ready to present the necessary and sufficient condition in gen-
eral. We will need the following additional notation:
i

W) = Y e+
J

j=1
W, (¢
L) = i (1)
t
L; = min L;(z)
O<r=<p;
L = max{L;}
Wi(#) is the total amount of work carried by tasks 7y, T», ..., T}, initiated in the

interval [0, ¢]. If all tasks are released at time 0, then task T; will complete under
the RM algorithm at time ¢/, such that W;(¢') =’ (if such a " exists).
The necessary and sufficient condition for schedulability is as follows.

Given a set of n periodic tasks (with Py < P, < ... < P,). Task 7} can be
feasibly scheduled using RM iff L; < 1.

As in our previous example, the practical question of how to check for
Wi(t) < t is easily answered by examining the defining equation W;(t) =
> i_1¢€;[t/P;]. We see that W;(¢) is constant, except at a finite number of points

J ;
when tasks are released. We only need to compute W;(¢) at the times

u={hlji=1,:u,i8=1, - LB/R]} (3.3)

TASK ASSIGNMENT AND SCHEDULING 51
Then, we have two RM-scheduling conditions:
At
RML1. If min,e, W;(¢) <, task 7; is RM-schedulable.

RM2. If maxieqs,) {mine, Wi (1)/t} < 1fori e {1,... n}1 e T;, then the
entire set T is RM-schedulable.

Example 3.6. Consider the set of four tasks where

1 20 100 80 210
2 30 150 4 100 400

(98}

Then,
71 = {100}
7 = {100, 150}
73 = {100, 150, 200, 210}
7 = {100, 150, 200, 210, 300, 400}

Let us check the RM-schedulability of each task. Figure 3.6 contains plots of W; (z)
fori =1,2,3,4. Task T; is RM-schedulable iff any part of the plot of W;(¢) falls
on or below the W;(t) = ¢ line.

In algebraic terms, we have:

e task 77 is RM-schedulable iff ¢; < 100
e task 7, is RM-schedulable iff

er +e, <100 OR

261 +e <150 (34)
e task 73 is RM-schedulable iff
e +ey+e3 <100 OR
2e) + e +e3 < 150 OR (3.5)
261 + 2@2 + ey < 200 OR '
361 + 2@2 + ey < 210
e task 7, is RM-schedulable iff
e t+e+e3+es <100 OR
2e; + e+ e3+ey <150 OR
2e1 4+ 2e; +e3 + ey <200 OR
1 2 3 4 < (3.6)

3e; +2e; +e3+es <210 OR
3e; +2e; + 2e3 +es < 300 OR
w4€1 -+ 362 + 283 +eq4 < 400

52 REAL-TIME SYSTEMS

TASK ASSIGNMENT AND SCHEDULING 53

Wl W2
100 — p K
’ 70
50 50 -
20 f——rts
.) S | |
100 50 100 150
Time Time

210

190 - 2
170 [
150 — }
130 ,
A B I A

50 100 150 200 100 200 300 400
Time Time

FIGURE 3.6
W; (¢) for Example 3.6; the dotted line indicates the locus of W;(t) =¢.

From Figure 3.6 and the above equations, we can see that tasks T;, T», and T3 are
RM-schedulable, but task 7j is not.

SPORADIC TASKS. Thus far, we have only considered periodic tasks. Let us
now introduce sporadic tasks. These are released irregularly, often in response
to some event in the operating environment. While sporadic tasks do not have
periods associated with them, there must be some maximum rate at which they
can be released. That is, we must have some minimum interarrival time between
the release of successive iterations of sporadic tasks. Otherwise, there is no limit
to the amount of workload that sporadic tasks can add to the system and it will
be impossible to guarantee that deadlines are met.

One way of dealing with sporadic tasks is to simply consider them as periodic
tasks with a period equal to their minimum interarrival time. Two other approaches
are outlined below.

Perhaps the simplest way to incorporate sporadic tasks is to define a fictitious
periodic task of highest priority and of some chosen fictitious execution petiod.
During the time that this task is scheduled to run on the processor, the processor
is available to run any sporadic tasks that may be awaiting service. Outside this
time, the processor attends to the periodic tasks.

Example 3.7. Figure 3.7 provides an illustration. We have here a fictitious highest-
priority task with period of 10 and execution time of 2.5. This task occupies the

u_’J_J_J# AN T N N U AU N TN T N A A A T T TN T N NN Y N N MY
0 5 10 15 20 25 30 35 40 45
FIGURE 3.7

Incorporating sporadic tasks: method 1.

processor during the time shown by the shaded portion, which has been set aside to
execute any pending sporadic tasks—every 10 time units, the processor can execute
up to 2.5 units of sporadic tasks. If, during that time, there is no sporadic task
awaiting service, the processor is idle. The processor cannot execute sporadic tasks
outside the shaded intervals.

The deferred server (DS) approach is less wasteful. Whenever the processor
is scheduled to run sporadic tasks and finds no such tasks awaiting service, it starts
executing the other (periodic) tasks in order of priority. However, if a sporadic
task arrives, it preempts the periodic task and can occupy a total time up to the
time allotted for sporadic tasks.

Example 3.8. In Figure 3.8, the occupancy of the processor by sporadic tasks is
indicated by shaded rectangles. 2.5 time units are allocated every 10-unit period for
sporadic tasks. A sporadic task requiring 5 units arrives at time 5 and takes over the
processor. At time 7.5, the processor has given the task its entire quota of 2.5 units
over the current period, and so the sporadic task is preempted by some other task. At
time 10, the next sporadic-task period begins and the remaining 2.5 units of service
are delivered. The next sporadic task, with a total execution time requirement of 7.5
units arrives at time 27.5. It has available to it the 2.5 units from the current period
of [20, 30] plus the 2.5 units from the next period of [30, 40]. It therefore occupies
the processor over the interval [27.5,32.5]. At that point, its quota of time on the
processor (for the [30, 40] period) is exhausted and it relinquishes the processor. At
time 40, a new sporadic-task period begins and the sporadic task receives its last
2.5 units of service, completing at 42.5.

Schedulability criteria can be derived for the DS algorithm in much the same way
as fpr the basic RM algorithm. When the relative deadlines of all tasks equal their
periods, and Uj is the processor utilization allocated to the sporadic tasks, we
can show that it is possible to schedule periodic tasks if the total task utilization

i P L

LLJ_LtIII|IIIIIII|IIl|III|I|\||1||IIJ_J

0

S 10 15 20 25 30 35 40 45

FIGURE 3.8
InCOrporating sporadic tasks: method 2 (deferred server).

54 REAL-TIME SYSTEMS

(including the sporadic contribution) U satisfies the following bound:
1 —Us if Uy <0.5
U= {U if Uy = 0.5

When U, > 0.5, it is possible to construct a periodic task set of arbitrarily low
(but positive) utilization that cannot be feasibly scheduled.

(3.7)

Example 3.9. Suppose P; = 6 is the period of the deferred server and P; = 6 for
periodic task 7;. Let the execution time reserved for the sporadic task be e, = 3,
that is, U; = 3/6 = 0.5. Then, if the sporadic tasks occupy back-to-back time-slices
of 3 each, an entire period of P; will pass with no time available for T;.

Equation 3.7 is a sufficient, though not necessary, condition for schedulability: It
is easy to construct feasible periodic task sets even when U; > 0.5.

TRANSIENT OVERLOADS. One drawback of the RM algorithm is that task pri-
orities are defined by their periods. Sometimes, we must change the task priorities
to ensure that all critical tasks get completed. We motivate this using the following
example.

Example 3.10. Suppose that we are given, in addition to the task periods P; and
worst-case execution times e; for task 7T;, average execution times ¢;. Consider the
four-task set with the following characteristics that we considered in Example 3.6.

~.

e a; P;

1 20 10 100
2 30 25 150
3 80 40 210
4 100 20 400

Suppose that tasks 77, 7T, and T, are critical, and that T3 is noncritical. It is easy
to check that if we run the RM algorithm on this task set, we cannot guarantee the
schedulability of all four tasks if they each take their worst-case execution times.
However, in the average case, they will all be RM-schedulable. The problem is how
to arrange matters so that all the critical tasks meet their deadlines under the RM
algorithm even in the worst case, while 73 meets its deadline in many other cases.
The solution is to boost the priority of T by altering its period. We will replace
T, by task 7, with the following parameters: P, = P4/2, e, =es)2,ay = ay/2. It
is easy to check that tasks Ty, 7T, and T, are RM-schedulable even in the worst
case. T; now has a lower priority than 7. Whenever the algorithm schedules 7},
we can run the code for 74. Because of the way we obtained e, if {Ty, T», T;} is an
RM-schedulable set, there will be enough time to complete the execution of 7j.
An alternative to reducing the period of 74 is to try to lengthen the period of
T5. This can be done only if the relative deadline of T3 can be greater than its original
period. In this case, we can replace T3 by two tasks T; and Ty, each with period
420 (i.e., 210 x 2), with worst-case execution times e; = e; = 80 and average-case

TASK ASSIGNMENT AND SCHEDULING S5

execution times aj = a; = 40. The scheduler will have to phase 75 and T3’ so that
they are released P3 = 210 units apart. If the resultant task set {11, T2, T3, 7', T}
is RM-schedulable, we are done. o

In general, if we lengthen the period by a factor of k, we will replace the original
task by k tasks, each phased by the appropriate amount. If we reduce the period
by a factor of k, we will replace the original task by one whose execution time is
also reduced by a factor of k.

This procedure of period transformation ultimately results in two sets of
tasks, C and NC, with the following properties:

e C contains all the critical tasks and possibly some noncritical tasks.
e NC contains only noncritical tasks.

o P.max < Py min, Where P yax and Py yin are the maximum and minimum
periods of tasks in C and NC, respectively.

e C is RM-schedulable under worst-case task execution times.

The procedure is to first set C to be the set of critical tasks and NC the set of
non-critical tasks. If Pe max < Py min, We are done. If this is not the case, then we
move those noncritical tasks whose periods are less than or equal to P, pmax into the
set C. If the new set C is RM-schedulable under worst-case task execution times,
we are done. If not, then we try to lengthen the periods of the noncritical tasks in
C by as much as possible until C is RM-schedulable. If this is not possible, then
we reduce the periods of the higher-priority critical tasks and move back into NC
all noncritical tasks in C whose periods are larger than the largest period of any
critical task in C. We continue this process until we arrive at C and NC with the
above properties.

MATHEMATICAL UNDERPINNINGS.* Let us develop the properties of the RM
a}gorithm. In particular, we are interested in what processor utilizations are pos-
sible and how to determine whether a given task set is feasible.

3 We begin with two definitions. Let R;(x) be the response time of task T;
if it is released at time x. x* is said to be a crifical time instant for task T; if
Rl:(x*) > R;(x) Vx. In other words, x* is the worst time at which to release T;,
Wwith respect to its response time. A critical time zone of task T; is defined as the
mterval [x*, x* 4+ R;(x*)]; that is, it is the interval between a critical time instant
and when the task (initiated at that time) finishes.

Theorem 3.1. A critical time instant of any task occurs when that task is requested
at the same time as all other higher-priority tasks.

_Proof. Number the tasks in descending order of priority. The response time of a task
1s the execution time plus the interval over which the task was waiting to execute.

Let us begin with the case where there are only two tasks, 77 and 7». Define
the time axis so that I, = 0. Task 7T} occupies the time intervals [I;, I} + i1, [I1 +

56 REAL-TIME SYSTEMS

task 2 deadline

'
4—61-——)

\ :

I I

e

Time ——»

1

FIGURE 3.9
Theorem 3.1; the shaded portions indicate that the processor is occupied by task T7.

P, I+ P +el,....,[LI +nPy, I + nP, + e1], The response time of task 7,
is given by

er +np(ey

where n1,; (j) is the number of times task 7; is preempted by task 7. Task T, executes
for I; before the first iteration of task Ty arrives. After that, it executes for at most
P, — ¢; between successive iterations of task T7. Hence,

(np() = D(P —e) + 11 < ey <npp()(Pr—er) + 1 (3.8)

To maximize the response time of task 7>, we must maximize n »2(1), subject to the
constraint in (3.8). The only variable is Ij; all the other parameters (P1, e;, €2) are
constants. From (3.8), it follows immediately that 7, (1) is maximized when I; = 0.

This is probably easier to see geometrically as in Figure 3.9. Task T, can
only execute in the unshaded portions and will complete whenever these intervals
have a total duration of e,. Altering I; is tantamount to moving the train of shaded
portions. From the diagram, it is apparent that the response time of 75 is maximized
when T, has zero phasing, i.e., [; =0.

A similar argument holds for an arbitrary number of tasks. Q.E.D.

A given set of tasks is said to be RM-schedulable if the RM algorithm
produces a schedule that meets all the deadlines. It follows from Theorem 3.1
that a set of tasks is RM-schedulable for any values of Iy, I, ..., if it is RM-
schedulable for I; = I, = - -- = 0. Therefore, to check for RM-schedulability, we
only need to check for the case where all task phasings are zero. Theorem 32 1s
what has made RM so popular.

Theorem 3.2. The RM algorithm is an optimal static-priority algorithm. That is, if
any static-priority algorithm can produce a feasible schedule, so can RM.

Proof. We proceed by contradiction. Suppose there exists some task set and some
other static-priority algorithm A such that A generates a feasible schedule, but RM
does not.

Since A is a static-priority algorithm, it proceeds by assigning priorities to
tasks and then scheduling on the basis of these priorities. Since A is different from
RM and optimal (while RM, under the hypothesis, is not), there must be some task
set T for which

e algorithm A allocaies task priorities differently from algorithm RM, and

o algorithm A successfully schedules the tasks in T, while under RM one or
more deadlines are missed.

TASK ASSIGNMENT AND SCHEDULING 57

In particular, there will be tasks 7;, 7; in the set T with the following properties:

1. Priority(7;) = Priority(7}) + 1 under algorithm A’s priority assignment.
2. P; > P;, so that under RM T; has a lower priority than 7;.

Denote by Sa the schedule that is produced by A. Now, consider the schedule, S,
obtained by interchanging the priorities (as defined by algorithm A) of 7; and T:,
and keeping all the other priority assignments the same as in algorithm A. If all the
task deadlines are met under S4, all task deadlines will continue to be met under §'.
(Can you work out why this should be the case?)

If this interchange leads to the same priority assignment as the RM algorithm,
then this shows that 7' is RM-schedulable, thus contradicting our original hypothesis.
If it is still different from the RM priority assignment, we can continue interchanging
priorities as before and obtain a feasible schedule each time. This process stops when
we get the same priority assignment as for RM and the proof is complete. Q.E.D.

Let us now generate some conditions on the processor utilization possible
under this algorithm. If there are » tasks, the processor utilization is given by

U= Z_;% (3.9)

A set of tasks is said to fully utilize the processor if

e the RM-schedule meets all deadlines, and

° Fhe task set is no longer RM-schedulable if the execution time of any task
is increased.

It is important to keep in mind that the utilization of a processor that is fully

l[l(;ilized, under the above definition, is not necessarily 1 over the entire interval
, 00).

Examp}g 3.11. Atwo-tasksetwith P, =5, P, =7,¢,=2,eo=3,and [}, = L, =0
fully. utilizes the processor; see Figure 3.10. If either e; or e, is increased, a deadline
1s missed. The processor utilization is less than 1: It is 2/5 + 3/7 = 0.83.

We will show that if the task set is such that the processor utilization is
HQ greatf.:r than n(2'/" — 1), the task set is RM-schedulable. This will provide us
VI’llth a simple check on RM-schedulability. Our proof will proceed by showing
F at the least upper bound of utilization for schedulability is n(2'/" — 1). Hence,
if the utilization of any set of tasks is no greater than n(21/" — 1), we will know

(2] u | > |

0
2 5 7 10 12 14 15 17 19

FIGURE 3.1¢
task set that fully utilizes the processor.

58 REAL-TIME SYSTEMS

that it is RM-schedulable. In what follows, assume the tasks are numbered so that
P, < P, < ... < P,. Let us begin with a task set consisting of only two tasks
(ie.,n=2).

Lemma 3.1. If there are two tasks, T1, T», and
€1 en
2 <oW2-1
Pl + P, = ()
then the tasks are RM-schedulable.

Proof. We have assumed that P, > P, so that task 15 has a lower priority than
task 7). During one period of task T», there are [P,/P] releases of task Ti. Let us
determine the maximum value of e, (as a function of e1) so that the task set remains
RM-schedulable. We have two cases.

Case 1. The processor is not executing task 77 at time Ps.

Since task 7; has preemptive priority over task T, Case 1 will only happen
if every iteration of 7; that was released in the interval [0, P,] has been
completed by P,. The last iteration of T within [0, P;] is released at time
P, | P,/P;|. Hence, we must have

P,

Pi|—=|+ea=<h (3.10)
Py

A total of [P,/P;] executions of task 7; are completed during one period of

T», and each consumes e; time. Since task T» must finish within its period,

the maximum possible value of e, is

P,
ep =P, — — 3.11
=P —e [Pl‘l (3.11)
The processor utilization is then given by
P,/P,
a e _a g _alb/hl (3.12)
P P P P,

Since

1 _IR/P

P P, -
the processor utilization is monotonically nonincreasing in e, whenever
PiLPy/P1] +e1 =P,

Case 2. The processor is executing task 71 at time P,.
Case 2 occurs when

P
P1 L—P£J+61>P2 (313)

1

If this happens, then task 7> must complete its execution by the time the last
iteration of 7, in [0, P,] is released. But this release happens, as we have
noted above, at time P,[P,/Pi]. So, task T» must complete execution over
the interval [0, Py| P>/P;]]. Over this interval, however, 77 occupies the pro-
cessor for a total time of | P,/P;] ei. So, the total time available for T, is

TASK ASSIGNMENT AND SCHEDULING 59

P P,/P;| — |P,/P;i] e;. This means that the maximum possible value for
¢ is as given below:

— i P
e = 7 {P1 — e} (3.14)

The corresponding processor utilization is

ape _ay hijp _ e
P P P Py P P
_ PP 1 [P/P]
- p LPIJ ta { P P (3.15)
Since
1 [P/P] -0
Py P, T

we see that when P;|P,/P;] + e; > P,, the processor utilization is mono-
tonically nondecreasing in e;.

From Equations (3.12) and (3.15), we find that the minimum value that pro-
cessor utilization can have if the task set fully utilizes the processor occurs when

1

P
P, LFZJJ”“ =P (3.16)

Denote the integral part of P,/P; by I and its fractional part by f. By definition,
0< f < 1. Then, | P,/P] =1, and

Py {1 if f=0

Py I+1 otherwise
Using Equations (3.12), (3.16), and a little algebra, we can write an expression for
the processor utilization when the processor is fully utilized by the task set:

U:1+P2AP1|_P2/P1J_P’_)“”“Pll_PQ/PIJ _P_Q
P P, Py
AN A e
Py Py Py | P P P,
1 if /=0
= I+7
7 +J;[otherwise @.17)

For f > 0, utilization is minimized when 7 is minimized. But 7 > 1 (since P, > Py),
80 the minimal value of U is attained for I = 1. From elementary calculus, we have

d 1+ _ 2f 1+
df{]+f}_l+f (14 f)? 619
Therefore, U is minimized when
2 Lt
ifiss aich eaialh BOMIIG a1 4 (3.19)

R @ 2

