DEFENSIVE
PROGRAMMING

Lecture 10 for EDA 263
Magnus Almgren

Department of Computer Science and
Engineering

Chalmers University of Technology

Traditional Programming

When writing a program, programmers typically focus on what is
needed to solve whatever problem the program addresses.
(p.391, Stallings/Brown)

* Common assumptions:
— inputs a program will receive,
— environment the program runs in,

— a “cooperative” user, etc.

Defensive Programming

One should always take care when writing a program — code is
reused and it is impossible to foresee how and when a module
will be used in the future. Never trust user input!

» Defensive programming / Secure Programming:
— must always validate assumptions (nothing is assumed),
— needs an awareness of the consequences of failures, and
— the techniques used by attackers.
e Range of similar vulnerabilities exploited over time (CERT)
— Injection Attacks (ex 12.2)
 Examples
— Databases: part of almost all real systems

— Web apps: often done quickly by junior programmers, but accessible
by anyone in the world (see OWASP list)

http://www.cert.org/secure-coding/

http://www.cert.org/secure-coding/
http://www.cert.org/secure-coding/
http://www.cert.org/secure-coding/

Domains

Handling Program Input
— Buffer Overflows
— Injections Attacks

Writing Safe Program Code
Interacting with OS and other programs
Handling Program Output

Example: Command Injection

_—

-

~—

A"
CG|

—
«~

A/Neb server

Shell

N

~—

Example: Command Injection

=7

N

Characters have
different meanings?

Same privileges as
web server

v

CGl
<~

Web server \F/

A"
Shell

Example: Command Injection
Mitigation Technique

Define what is known dangerous input
Define what is valid input

Problems:
— Definition of what is really dangerous

— Multiple encodings
* For web: space = %20, / = %2F, ; = %3B

Not only for strings but also other types of
data: integer overflows

v
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01219077

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01219077

Vulnerability Note VU#20276
phf CGI Script fails to guard against newline characters

* CGI script phf, exploited late 1990’s.

* Tried to sanitize input using a routine supplied in
the web server
— escape_shell_cmd()
— Removing a number of shell meta characters BUT ...
— Buggy: forgot to remove newline character

e Attack:
embed a newline character in the string passed to

the CGI script phf, resulting in additional
commands to execute.

http://www.kb.cert.org/vuls/id/20276

http://www.kb.cert.org/vuls/id/20276

Example: Command Injection

lpb; echo attack

™.

lpb; echo attack

~

A"
CG|

«

W, Y

Shell

A/Neb server

./

Example: Command Injection

IDS Snort "o
Sl Rule: No »” allowed

lpb; echo attack

[y

|
(
Q

™~ .

Y /’l\
—

CaGl Shell

A/NEb Ser:er\F/

Example: Command Injection

IDS Snort ”o»
Sl Rule: No »” allowed

lpb%3B echo attacEL

[y

|
(
Q

lpb; echo attack

\%38-);

CGl

SN

Shell

/Web se:er\v—/

OWASP

* The Open Web Application Security Project
(OWASP) is ... organization focused on

improving the security of application
software.

* OWASP Local Chapter in Gothenburg
— https://www.owasp.org/index.php/Gothenburg

https://www.owasp.org/index.php/Main Page

https://www.owasp.org/index.php/Gothenburg
https://www.owasp.org/index.php/Main_Page

OWASP Top 10 2010

Al-Injection

A2-Cross Site Scripting
(XSS)

A3-Broken Authentication
and Session Management

A4-Insecure Direct Object
References

A5-Cross Site Request
Forgery (CSRF)

Ab6-Security
Misconfiguration

A7-Insecure
Cryptographic Storage

A8-Failure to Restrict URL
Access

A9-Insufficient Transport
Layer Protection

A10-Unvalidated
Redirects and Forwards

https://www.owasp.org/index.php/Top 10 2010-Main

http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf

https://www.owasp.org/index.php/Top_10_2010-Main
https://www.owasp.org/index.php/Top_10_2010-Main
https://www.owasp.org/index.php/Top_10_2010-Main

OWASP Top 10 2010

Name |esrpion

Al-Injection Injection flaws, such as SQL, OS, and LDAP injection, occur
when untrusted data is sent to an interpreter as part of a
command or query. The attacker’s hostile data can trick the
interpreter into executing unintended commands or
accessing unauthorized data.

A2-Cross Site Scripting XSS flaws occur whenever an application takes untrusted data

(XSS) and sends it to a web browser without proper validation and
escaping. XSS allows attackers to execute scripts in the
victim’s browser which can hijack user sessions, deface web
sites, or redirect the user to malicious sites

A3-Broken Application functions related to authentication and session

Authentication and management are often not implemented correctly, allowing

Session Management attackers to compromise passwords, keys, session tokens, or
exploit other implementation flaws to assume other users’
identities.

SQL injection example

Cortesy of John Smith, IBM Cooperation, GB

Injection Flaws

» What is it?

- User-supplied data is sent to an interpreter as part
of a command, query or data.

» What are the implications?
> SQL Injection - Access/modify data in DB

>SSl Injection - Execute commands on server and
access sensitive data

- LDAP Injection - Bypass authentication

o]

SQL Injection

Username:

: : L : jsmith
User input is embedded as-is in predefined SQL ,,Jasm,,d:
statements: demo1234
[] Remember me
query = "SELECT * from tUsers where o
ougir
userid='" + iUserlD + "' AND Forgot Password?
password='" + (Password + "'";
UserlD | Username | Password Name

1:> 1824 | jsmith | demo1234 | John Smith

Hacker supplies input that modifies the original SQL statement, for
example: ivserip =' or 1=1 --

SELECT * from tUsers where
userid='’' or 1l=1 -- ' AND password='bar'

SQL Injection

hackbook

Username:

: : . : jsmith
User input is embedded as-is in predefined SQL ...
statements: demo1234
[] Remember me
query = "SELECT * from tUsers where o
ogin
userld=' "ot iUSGHD + s AND Forgot Password?
password='" + (Password + "'";
UserlD | Username | Password Name
1:> 1824 | jsmith | demo1234 | John Smith

= Hacker supplies input that modifies the original SQL statement, for

example: ivserip =' or 1=1 --

UserIlD | Username | Password Name

1 admin $#kaoeFor Admin

Summary

» Common theme with web application
vulnerabilities:
- Unvalidated user input is the attack vector

» Good security practice:
- Assume all user input is evil !

OWASP Top 10 2010

Name |esrpion

Al-Injection Injection flaws, such as SQL, OS, and LDAP injection, occur
when untrusted data is sent to an interpreter as part of a
command or query. The attacker’s hostile data can trick the
interpreter into executing unintended commands or
accessing unauthorized data.

A2-Cross Site Scripting XSS flaws occur whenever an application takes untrusted data

(XSS) and sends it to a web browser without proper validation and
escaping. XSS allows attackers to execute scripts in the
victim’s browser which can hijack user sessions, deface web
sites, or redirect the user to malicious sites

A3-Broken Application functions related to authentication and session

Authentication and management are often not implemented correctly, allowing

Session Management attackers to compromise passwords, keys, session tokens, or
exploit other implementation flaws to assume other users’
identities.

Google Gruyere
Web Application Exploits and Defenses

 Want to beat the hackers at their own game?
— Learn how hackers find security vulnerabilities!
— Learn how hackers exploit web applications!
— Learn how to stop them!

* http://google-gruyere.appspot.com/.../

 Example
— XSS attack: same origin policy

— Injected code stored at site — run when user visits site
(or tricking user to click on URL in email)

— Here is an image of a cute
<a href="http://google-gruyere.appspot.com/.../
<script>alert(1)</script>"“ >cat

http://google-gruyere.appspot.com/

http://google-gruyere.appspot.com/400034139697/
http://google-gruyere.appspot.com/400034139697/
http://google-gruyere.appspot.com/400034139697/
http://google-gruyere.appspot.com/
http://google-gruyere.appspot.com/
http://google-gruyere.appspot.com/

GO‘.\ nge COde Google Code University

‘ ~ Web Application Exploits and Defenses

A Codelab by Bruce Leban, Mugdha Bendre, and Parisa Tabriz

UPDATED July 13, 2010: We have changed the name of the codelab application to Gruyere and have moved the location to this page. Please update your bookmarks.

Want to beat the hackers at their own game?

e Learn how hackers find security vulnerahilities!
¢ Learn how hackers exploit web applications!
s Learn how to stop them!

This codelab shows how web application vulnerabilities can be exploited and how to defend against these attacks. The best way to learn things is by doing, so you'll get a chance to do some real
penetration testing, actually exploiting a real application, Specifically, you'll learn the following:

¢ How an application can be attacked using common web security vulnerahbilities, like cross-site scripting vulnerabilities (X553 and cross-site request forgery (XSRF).
s How to find, fix, and avoid these common vulnerabilities and other bugs that have a security impact, such as denial-of-service, information disclosure, or remote code execution,

To get the most out of this lab, you should have some familiarity with how a web application works (e.g., general knowledge of HTML, templates, cookies, A&, eto.),

Gruyere

rﬂ This codelab is built around Gruyere fgrur'jearf - a small, cheesy web application that allows its users to publish snippets of text and store

o [——— ST assorted files, "Unfortunately,” Gruyere has multiple security bugs ranging from cross-site scripting and cross-site request forgery, to
S information disclosure, denial of service, and remote code execution. The goal of this codelab is to guide you through discovering some of
these bugs and learning ways to fix them both in Gruyere and in general.

tame Signin | Sgeve The codelab is organized by types of vulnerabilities. In each section, vou'll find a brief description of a vulnerability and a task to find an

instance of that vulnerability in Gruyere, Your job is to play the role of a malicious hacker and find and exploit the security bugs. In this

GI’U}'EI’E' Home codelab, you'll use both black-box hacking and white-box hacking. In black beox hacking, you try to find security bugs by experimenting with
= the application and manipulating input fields and URL parameters, trying to cause application errors, and looking at the HTTP requests and

responses to guess server behavior, You do not have access to the source code, although understanding how to view source and being

Rafrash able to view hittp headers (as you can in Chrome or LiveHTTPHeaders for Firefox) is valuable. Using a web proxy like Burp or WebScarab may
T —) be helpful in creating or madifying requests. In white-box hacking, you have access to the source code and can use automated or manual
) analysis to identify bugs, You can treat Gruyere as if it's open source: you can read through the source code to try to find bugs, Gruyere is
Chedear Sapece s b hatslest apphabon on e web writhen in Python, so zome familiarity with Python can be helpful. However, the security vulnerabilities covered are not Python-specific and
) SEEICEES ol you can do most of the lab without even looking at the code. You can run a local instance of Gruyere to assist in your hacking: for example,
Brie Briniia e el ihe chasasalll ¥ou can create an administrator account on your local instance to learn how administrative features work and then apply that knowledge to
Al snicosts Homaptos the instance you want to hack. Security researchers use both hacking technigues, often in combination, in real life.

We'll tag each challenge to indicate which techniques are required to solve them:

E Challenges that can be solved just by using black box techniques.

Challenges that require that you look at the Gruyere source code,

ﬂ Challenges that require some specific knowledge of Gruyere that will be given in the first hint.

WARNIMG: Accessing or attacking a computer system without authorization is illegal in many jurisdictions, While doing this codelab, you are specifically granted authorization to attack the Gruyere
application as directed. You may not attack Gruvere in ways other than described in this codelab, nor may you attack App Engine directly or any other Google service, You should use what you learn
from the codelab to make your own applications more secure. You should not use it to attack any applications other than your own, and only do that with permission from the appropriate
authorities (e.q., your company's security team).

CmbiRi e ~ ~—

—

Web Application Exploits ar ><7 Gruyere: Home 1= Gruyere: Profile

L C () google-gruyere.appspot.com/400034139697/logout @& v -
*§ G2 CJST COcCc CJC [CJBusiness (CJ Refs (] Dicts (J Phone (§) Weather (] Google () YTubel (®) -»Enote)L ZPOF (O IP * (] Other bo

Home Sign in | Sign up

Gruyere: Home

m Refresh

Most recent snippets:

Cheddar Gruyere is the cheesiest application on the web.
‘ Mac All snippets Homepage

Lﬁ'g[attacker Do you know why garbage trucks drive so fast in Sweden? They are afraid of getting robbed...
- All snippets Homepage

teacher All exam questions have been created!
All snippets Homepage

rie Brie is the queen of the cheeses!!!
All snippets Homepage

E Web Application Exploits ar = E Gruyere: Login ® E Gruyere: Profile *

&« C @ google-gruyere.appspot.com/400034139697/login w od N
*J G2 COST [JCC JC [Business (JRefs [J Dicts (3 Phone (§) Weather (J Google () YTube! (D) -»Enote)L @ PDF CJIP * [Other bookmarks
Home Sign in | Sign up

Gruyere: Login
LN

User name: attacker

Password: .esessss

< Login

()

e

Web Application Exploits ar XI Gruyere: MNew Snippet ix Gruyere: Profile

€« C @ google-gruyere.appspot.com/400034139697 /newsnippet.gtl
*J G2 COsT [Jcc (OC [Business [Refs [Dicts [Phone () Weather (7 Google (§) YTube! () -»Enote (DL ZPOF (I IP 2

Home | My Snippets | New Snippet | Upload attacker <attacker> | Profile | Si

Gruyere: New Snippet

P

Add a new snippet.

'Here is an image of a cute <a href="http://google-
gruyere.appspot.com/400034139697/<script>alert(1)
</script>">cat

-t

Limited HTML is now supported in snippets (e.g., , Submit
<j>, etc.)! 4'

—
Web Application Exploits ar KI Gruyere: Snippets ® E Gruyere: Profile * W

€« C @ google-gruyere.appspot.com/400034139697 /snippets.gtl
*J G2 COsT [Jcc (OC [Business [Refs [Dicts [Phone () Weather (7 Google (§) YTube! () -»Enote (DL ZPOF (I IP 2

Home | My Snippets | New Snippet | Upload attacker <attacker> | Profile | Si

My Snippets «
N\ 2

All snippets:
(1 [X] Here is an image of a cute cat
2 [X] Do you know why garbage trucks drive so fast in Sweden? They are afraid of getting robbe

My site

./

A
E Web Application Exploits ar =

i

E Gruyere: Login

® E Gruyere: Profile * W

L C () google-gruyere.appspot.com/400034139697/login
*J G2 COsT [Jcc (OC [Business [Refs [Dicts [Phone () Weather (7 Google (§) YTube! () -»Enote (DL ZPOF (I IP 2

Home

User name:

Password:

Signin| S

() Gruyere: Login

teacher

Login

e g RERTR ST T R et eyl et l..n.n-r-u r.n.nu-u-tt\.rluj l--n..-r-.u Ut el Tl E e i

Home | My Snippets | New Snippet | Upload

Gruyere: Home

Most recent snippets:

Cheddar Gruyere is the cheesiest application on the web.
Mac All snippets Homepage

th] attacker Here is an image of a cute cat
A All snippets Homepage

teacher All exam questions have been created!
All snippets Homepage

rie Brie is the queen of the cheeses!!!
All snippets Homepage

teacher <teacher> | Profile | Sign out

Refresh

i

A
E Web Application Exploits ar = E Gruyere: Error ® E Gruyere: Profile * W

€« C @ google-gruyere.appspot.com/400034139697/ <script=alert(1) </script=
*J G2 COsT [Jcc (OC [Business [Refs [Dicts [Phone () Weather (7 Google (§) YTube! () -»Enote (DL ZPOF (I IP 2

Home | My Snippets | New Snippet | Upload teacher <teacher> | Profile | Si

(Invalid request: /)

-
¢. The page at google-gruyere.appspot.com says: u

1

QK

New Era 2010: Stuxnet

e Advanced Malware

— target specifically Programmable Logic Controllers:
Siemens SIMATIC Step 7 software

M4

— Lots of rumors of goal and who creators _ 4 _ -

g

o\

* designed and released by a government -
— the U.S. or Israel ??7?

* Target: Bushehr nuclear power plant in lran
(60% of infected hosts in Iran)

Symantec oct-2010: W32.Stuxnet Dossier (http://goo.gl/pP7S)

Stuxnet: Pandora’s box ?

— Stuxnet is advanced and one of the
first wild malware’s targeting PLCs.

* 6—8 people about 6 months to create.

— PLGCs exists in many industries

e factory assembly lines, amusement rides, L=
or lighting fixtures.

now blueprint to create malware targeting PLCs

 Compare this with the Loveletter virus (2000)
— 2003/11 there existed 82 different variants of Loveletter.
— Itis claimed that more than 5,000 attacks are carried out every day.

Project Course: DAT285B
ICT Support for Adaptiveness and Security

in the Smart Grid

CHALMERS GOTEBORG UNIVERSITY
Computer Science and Engineering

ICT Support for Adaptiveness and Security in the Smart Grid
DAT285B

Spring semester, study period 4, 2013

(DAT28S -- Masterclass in Areas of advance)

m,

News:

013-02-12] New draft home page created. Content will be added during February.

Course Description
Examiner:

* Associate Proefssor Marina Papatriantafilou, phone: 031-772 5413, email: ptrianta
¢ Assistant Professor Magnus Almgren, phone: 031-772 1702, email: magnus almgren

This is a masterclass in the area of advance, giving an overview of the smart grid and important technologies from the Information and Communication Technologies (ICT) area that is being used. The focus is
on algorithms, distributed computing, communication and security.

In Europe and elsewhere, the electrical grid is being transitioned into the "smart grid" in order to increase flexibility and accommodate large scale energy production from renewable sources. This transition
imvolves, among other steps, the installation of new, advanced equipment - for example, the replacement of traditional domestic electrical meters with smart meters - and remote communication with devices -
for example. allowing remote access to an unsupervised energy production site.

The course is built around seminars where you learn about the design or development of systems. infrastructure. and applications that are related to the electric power smart grid, with a focus on distributed
algorithms and security. You are expected to give some presentations, as well as to participate actively in discussions. As part of the course, vou are also expected to complete lab work. i.e. a significant
project with relevance to the smart grid. In this way vou will also gain experience at the front connecting research and education in the main domain overlapping two of the Areas of Advance, namely ICT and
Energy.

Recommended text book
The course is built around semmars, lecture notes and research papers.

Course Memo

The Course memo summarizes relevant information of the course.

Reading Instructions

//www.cse.chalmers.se/edu/course/DAT285B/

http

ICT Support for Adaptiveness and
Security in the Smart Grid (DAT285B)

* Goals
— Letting students from computer science and other

disciplines be introduced to advanced interdisciplinary
concepts related to the smart grid, thus

— building an understanding of the vocabulary and
important terms that may have different meanings in

the individual disciplines, and

— investigating a domain-specific problem relevant to
the smart grid that need an understanding beyond the
traditional ICT field.

Two instances of DAT285

e LP2 = Autonomous and Cooperative Vehicular Systems
* LP4 = ICT Support for Adaptiveness and Security in the Smart Grid

Environment

* Based on both the present and future design of the
smart grid.

— How can techniques from distributed systems be applied
to large, heterogeneous systems where a
massive amount of data will be collected?

— How can such a system, containing legacy components
with no security primitives, be made
secure when the communication is added by
interconnecting the systems?

 The students will have access to a hands-on lab, where
they can run and test their design and code.

Course Setup

 The course is given on an advanced master’s
level, resulting in 7.5 points.

* The course setup

— The first part of the course consists of lectures to
introduce the students to each other and the two
disciplines (“crash course”).

— The second part of the course will follow a seminar-
style where research papers from both disciplines are
actively discussed and then presented.

— At the end of the course the students are also
expected to present their respective project.

