
DEFENSIVE

PROGRAMMING
Lecture 10 for EDA 263

Magnus Almgren

Department of Computer Science and
Engineering

Chalmers University of Technology

Traditional Programming

• Common assumptions:

– inputs a program will receive,

– environment the program runs in,

– a “cooperative” user, etc.

When writing a program, programmers typically focus on what is
needed to solve whatever problem the program addresses.

(p.391, Stallings/Brown)

Defensive Programming

• Defensive programming / Secure Programming:
– must always validate assumptions (nothing is assumed),
– needs an awareness of the consequences of failures, and
– the techniques used by attackers.

• Range of similar vulnerabilities exploited over time (CERT)
– Injection Attacks (ex 12.2)

• Examples
– Databases: part of almost all real systems
– Web apps: often done quickly by junior programmers, but accessible

by anyone in the world (see OWASP list)

One should always take care when writing a program – code is
reused and it is impossible to foresee how and when a module
will be used in the future. Never trust user input!

http://www.cert.org/secure-coding/

http://www.cert.org/secure-coding/
http://www.cert.org/secure-coding/
http://www.cert.org/secure-coding/

Domains

• Handling Program Input

– Buffer Overflows

– Injections Attacks

• Writing Safe Program Code

• Interacting with OS and other programs

• Handling Program Output

Example: Command Injection

CGI Shell

Web server

Example: Command Injection

CGI Shell

Web server

Characters have
different meanings?

Same privileges as
web server

Example: Command Injection
Mitigation Technique

• Define what is known dangerous input

• Define what is valid input

• Problems:

– Definition of what is really dangerous

– Multiple encodings

• For web: space = %20, / = %2F, ; = %3B

• Not only for strings but also other types of
data: integer overflows

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01219077

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01219077

Vulnerability Note VU#20276
phf CGI Script fails to guard against newline characters

• CGI script phf, exploited late 1990’s.

• Tried to sanitize input using a routine supplied in
the web server
– escape_shell_cmd()

– Removing a number of shell meta characters BUT …

– Buggy: forgot to remove newline character

• Attack:
embed a newline character in the string passed to
the CGI script phf, resulting in additional
commands to execute.

http://www.kb.cert.org/vuls/id/20276

http://www.kb.cert.org/vuls/id/20276

Example: Command Injection

CGI Shell

Web server

lpb; echo attack lpb; echo attack

Example: Command Injection

CGI Shell

Web server

lpb; echo attack lpb; echo attack

IDS Snort
Rule: No ”;” allowed

Example: Command Injection

CGI Shell

Web server

lpb; echo attack

IDS Snort
Rule: No ”;” allowed

lpb%3B echo attack

%3B  ;

OWASP

• The Open Web Application Security Project
(OWASP) is … organization focused on
improving the security of application
software.

• OWASP Local Chapter in Gothenburg

– https://www.owasp.org/index.php/Gothenburg

https://www.owasp.org/index.php/Main_Page

https://www.owasp.org/index.php/Gothenburg
https://www.owasp.org/index.php/Main_Page

OWASP Top 10 2010

• A1-Injection

• A2-Cross Site Scripting
(XSS)

• A3-Broken Authentication
and Session Management

• A4-Insecure Direct Object
References

• A5-Cross Site Request
Forgery (CSRF)

• A6-Security
Misconfiguration

• A7-Insecure
Cryptographic Storage

• A8-Failure to Restrict URL
Access

• A9-Insufficient Transport
Layer Protection

• A10-Unvalidated
Redirects and Forwards

 https://www.owasp.org/index.php/Top_10_2010-Main

http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf

https://www.owasp.org/index.php/Top_10_2010-Main
https://www.owasp.org/index.php/Top_10_2010-Main
https://www.owasp.org/index.php/Top_10_2010-Main

OWASP Top 10 2010

Name Description

A1-Injection Injection flaws, such as SQL, OS, and LDAP injection, occur
when untrusted data is sent to an interpreter as part of a
command or query. The attacker’s hostile data can trick the
interpreter into executing unintended commands or
accessing unauthorized data.

A2-Cross Site Scripting
(XSS)

XSS flaws occur whenever an application takes untrusted data
and sends it to a web browser without proper validation and
escaping. XSS allows attackers to execute scripts in the
victim’s browser which can hijack user sessions, deface web
sites, or redirect the user to malicious sites

A3-Broken
Authentication and
Session Management

Application functions related to authentication and session
management are often not implemented correctly, allowing
attackers to compromise passwords, keys, session tokens, or
exploit other implementation flaws to assume other users’
identities.

Cortesy of John Smith, IBM Cooperation, GB

 What is it?
◦ User-supplied data is sent to an interpreter as part

of a command, query or data.

 What are the implications?
◦ SQL Injection – Access/modify data in DB

◦ SSI Injection – Execute commands on server and
access sensitive data

◦ LDAP Injection – Bypass authentication

◦ …

User input is embedded as-is in predefined SQL
statements:

SELECT * from tUsers where

userid=‘’ or 1=1 -- ' AND

query = "SELECT * from tUsers where

userid='" + + "' AND

password='" + + "'";

 Hacker supplies input that modifies the original SQL statement, for

example: iUserID = ' or 1=1 --

SELECT * from tUsers where

userid=‘jsmith' AND password=‘demo1234'

' AND password='bar'

John Smith demo1234 jsmith 1824

Name Password Username UserID

iUserID

iPassword

jsmith

demo1234

User input is embedded as-is in predefined SQL
statements:

SELECT * from tUsers where

userid=' ' AND password='bar'

query = "SELECT * from tUsers where

userid='" + + "' AND

password='" + + "'";

 Hacker supplies input that modifies the original SQL statement, for

example: iUserID = ' or 1=1 --

SELECT * from tUsers where

userid=‘jsmith' AND password=‘demo1234'

' AND password='bar' Admin $#kaoeFor admin 1

Name Password Username UserID

John Smith demo1234 jsmith 1824

Name Password Username UserID

iUserID

iPassword

jsmith

demo1234

 Common theme with web application
vulnerabilities:
◦ Unvalidated user input is the attack vector

 Good security practice:
◦ Assume all user input is evil !

OWASP Top 10 2010

Name Description

A1-Injection Injection flaws, such as SQL, OS, and LDAP injection, occur
when untrusted data is sent to an interpreter as part of a
command or query. The attacker’s hostile data can trick the
interpreter into executing unintended commands or
accessing unauthorized data.

A2-Cross Site Scripting
(XSS)

XSS flaws occur whenever an application takes untrusted data
and sends it to a web browser without proper validation and
escaping. XSS allows attackers to execute scripts in the
victim’s browser which can hijack user sessions, deface web
sites, or redirect the user to malicious sites

A3-Broken
Authentication and
Session Management

Application functions related to authentication and session
management are often not implemented correctly, allowing
attackers to compromise passwords, keys, session tokens, or
exploit other implementation flaws to assume other users’
identities.

Google Gruyere
Web Application Exploits and Defenses
• Want to beat the hackers at their own game?

– Learn how hackers find security vulnerabilities!
– Learn how hackers exploit web applications!
– Learn how to stop them!

• http://google-gruyere.appspot.com/.../
• Example

– XSS attack: same origin policy
– Injected code stored at site – run when user visits site

(or tricking user to click on URL in email)
– Here is an image of a cute

<a href="http://google-gruyere.appspot.com/.../
<script>alert(1)</script>“ >cat

http://google-gruyere.appspot.com/

http://google-gruyere.appspot.com/400034139697/
http://google-gruyere.appspot.com/400034139697/
http://google-gruyere.appspot.com/400034139697/
http://google-gruyere.appspot.com/
http://google-gruyere.appspot.com/
http://google-gruyere.appspot.com/

New Era 2010: Stuxnet

• Advanced Malware

– target specifically Programmable Logic Controllers:
 Siemens SIMATIC Step 7 software

– Lots of rumors of goal and who creators

• designed and released by a government
– the U.S. or Israel ???

• Target: Bushehr nuclear power plant in Iran
(60% of infected hosts in Iran)

Symantec oct-2010: W32.Stuxnet Dossier (http://goo.gl/pP7S)

Stuxnet: Pandora’s box ?

– Stuxnet is advanced and one of the
first wild malware’s targeting PLCs.

• 6—8 people about 6 months to create.

– PLCs exists in many industries

• factory assembly lines, amusement rides,
or lighting fixtures.

• Compare this with the Loveletter virus (2000)

– 2003/11 there existed 82 different variants of Loveletter.

– It is claimed that more than 5,000 attacks are carried out every day.

now blueprint to create malware targeting PLCs

Project Course: DAT285B

ICT Support for Adaptiveness and Security
in the Smart Grid

h
tt

p
:/

/w
w

w
.c

se
.c

h
al

m
er

s.
se

/e
d

u
/c

o
u

rs
e

/D
AT

2
8

5
B

/

ICT Support for Adaptiveness and
Security in the Smart Grid (DAT285B)

• Goals

– Letting students from computer science and other
disciplines be introduced to advanced interdisciplinary
concepts related to the smart grid, thus

– building an understanding of the vocabulary and
important terms that may have different meanings in
the individual disciplines, and

– investigating a domain-specific problem relevant to
the smart grid that need an understanding beyond the
traditional ICT field.

Two instances of DAT285
• LP2 = Autonomous and Cooperative Vehicular Systems
• LP4 = ICT Support for Adaptiveness and Security in the Smart Grid

Environment

• Based on both the present and future design of the
smart grid.
– How can techniques from distributed systems be applied

to large, heterogeneous systems where a
massive amount of data will be collected?

– How can such a system, containing legacy components
with no security primitives, be made
secure when the communication is added by
interconnecting the systems?

• The students will have access to a hands-on lab, where
they can run and test their design and code.

Course Setup

• The course is given on an advanced master’s
level, resulting in 7.5 points.

• The course setup
– The first part of the course consists of lectures to

introduce the students to each other and the two
disciplines (“crash course”).

– The second part of the course will follow a seminar-
style where research papers from both disciplines are
actively discussed and then presented.

– At the end of the course the students are also
expected to present their respective project.

