

Priority queues,
binary heaps,
and heapsort

(6.9, 21.1 – 21.5)

Priority queue

A priority queue is an ADT supporting
three operations:
● insert: add an element
● findMin: return the smallest element
● deleteMin: remove the smallest element

Allows you to maintain a set of elements
while always knowing the smallest one

Java: PriorityQueue<E> class defining
add, element and remove

Implementing a priority queue

Several possible ways:
● An unsorted array?
● A sorted array?
● A binary search tree?
● A balanced binary search tree?

A nicer way: a binary heap

The heap property

A tree satisfies the heap property if the
value of each node is less than (or equal
to) the value of its children:

What can we say about the root node?

8

18 29

37 32 74 89

20 28 39 66

Root node is the
smallest –

can do findMin
in O(1) time

Binary heap

A binary heap is a complete binary tree that
satisfies the heap property:

Note: it is not a binary search tree!

Complete means that all levels except the
bottom one are full, and the bottom level is
filled from left to right (see diagram)

8

18 29

37 26 76 32 74 89

20 28 39 66

Binary heap invariant

The binary heap invariant:
● The tree must be complete
● It must have the heap property (each node is less

than or equal to its children)

Remember, all our operations must
preserve this invariant

(Why this invariant? See later!)

Adding an element to a binary heap

Step 1: insert the element at the next
empty position in the tree

This might break the heap invariant!

In this case, 12 is less than 66, its parent.

8

18 29

37 26 76 32 74 89

20 28 39 66

12

Adding an element to a binary heap

Step 2: if the new element is less than its
parent, swap it with its parent

The invariant is still broken, since 12 is
less than 29, its new parent

8

18 29

37 26 76 32 74 89

20 28 39 12

66

Adding an element to a binary heap

Repeat step 2 until the new element is
greater than or equal to its parent.

Now 12 is in its right place, and the
invariant is restored. (Think about why
this algorithm restores the invariant.)

8

18 12

37 26 76 32 74 89

20 28 39 29

66

Why this works

At every step, the heap property almost
holds except that the new element might be
less than its parent

After swapping the element and its parent,
still only the new element can be in the
wrong place (why?)

8

18 29

37 26 76 32 74 89

20 28 39 12

66

Removing the minimum element

Step 1: replace the root element with the
last element in the heap

The invariant is broken, because 66 is
greater than its children

66

18 12

37 26 76 32 74 89

20 28 39 29

Removing the minimum element

Step 2: if the moved element is greater
than its children, swap it with its least
child

(Why not its greatest child?)

12

18 66

37 26 76 32 74 89

20 28 39 29

Removing the minimum element

Step 3: repeat until the moved element is
less than or equal to its children

12

18 29

37 26 76 32 74 89

20 28 39 66

Sifting

Two useful operations in implementing a
heap

Sift up: if an element might be less than its
parent, i.e. “too low” (used in insert)
● Repeatedly swap the element with its parent

Sift down: if an element might be greater
than its children, i.e. “too high” (used in
deleteMin)
● Repeatedly swap the element with its least child

Summary so far

Binary heap: complete binary tree where
every node is less than or equal to its
children

Minimum is root node

Insert: add to end of tree and sift up
(called percolate up in book)

Delete minimum: swap with final element
and sift down (called percolate down in
book)

Binary heaps are arrays!

A binary heap is really implemented
using an array: 8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6

8 18 29 20 28 39 66 37 26 76 32 74 89

Child positions

8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6

8 18 29 20 28 39 66 37 26 76 32 74 89

Pa
re

n
t

L. C
h
ild

R
. C

h
il d

The left child of node i
is at index 2i + 1

in the array...

...the right child
is at index 2i + 2

Child positions

8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6

8 18 29 20 28 39 66 37 26 76 32 74 89

The left child of node i
is at index 2i + 1

in the array...

...the right child
is at index 2i + 2

Pa
re

n
t

L. C
h
ild

R
. C

h
il d

Child positions

8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6

8 18 29 20 28 39 66 37 26 76 32 74 89

The left child of node i
is at index 2i + 1

in the array...

...the right child
is at index 2i + 2

Pa
re

n
t

L. C
h
ild

R
. C

h
il d

Child positions

8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6

8 18 29 20 28 39 66 37 26 76 32 74 89

The left child of node i
is at index 2i + 1

in the array...

...the right child
is at index 2i + 2

Pa
re

n
t

L. C
h
ild

R
. C

h
il d

Child positions

8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6

8 18 29 20 28 39 66 37 26 76 32 74 89

The left child of node i
is at index 2i + 1

in the array...

...the right child
is at index 2i + 2

Pa
re

n
t

L. C
h
ild

R
. C

h
il d

Parent position

8

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6

8 18 29 20 28 39 66 37 26 76 32 74 89

The parent of node i
is at index (i-1)/2

Pa
re

n
t

C
h
ild

Why the binary heap invariant

The binary heap invariant: the tree is
complete and satisfies the heap property
● Because of the heap property, we can find the

minimum element in O(1) time
● Because the tree is complete, we can represent a

heap of n items with an array of size n

Warning

We are using 0-based arrays, the obvious choice in
Java

The book, for some reason, uses 1-based arrays (and
later switches to 0-based arrays)!

In a heap implemented using a 1-based array:
● the left child of index i is index 2i
● the right child is index 2i+1
● the parent is index i/2

Be careful when doing the lab!

Reminder: inserting into a binary heap

To insert an element into a binary heap:
● Add the new element at the end of the heap
● Sift the element up: while the element is less than

its parent, swap it with its parent

We can just as well implement this using
the array representation! Just need to use
index calculations instead of following
left/right/parent links.

Inserting into a binary heap

Step 1: add the new element to the end of
the array, set child to its index

6

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6

6 18 29 20 28 39 66 37 26 76 32 74 89

13

8

C
h
ild

8

Inserting into a binary heap

Step 2: compute parent = (child-1)/2
6

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6

6 18 29 20 28 39 66 37 26 76 32 74 89

13

8

C
h
ild

Pa
re

n
t

8

Inserting into a binary heap

Step 3: if array[parent] > array[child],
swap them 6

18 29

37 26 76 32 74 89

20 28 39 8

0 1 2 7 8 9 10 11 123 4 5 6

6 18 29 20 28 39 8 37 26 76 32 74 89

13

66

C
h
ild

Pa
re

n
t

66

Inserting into a binary heap

Step 4: set child = parent, parent =
(child 1) / 2– , and repeat

6

18 29

37 26 76 32 74 89

20 28 39 8

0 1 2 7 8 9 10 11 123 4 5 6

6 18 29 20 28 39 8 37 26 76 32 74 89

13

66

66

C
h

ild

Pa
re

n
t

Inserting into a binary heap

Step 4: set child = parent, parent =
(child 1) / 2– , and repeat

6

18 8

37 26 76 32 74 89

20 28 39 29

0 1 2 7 8 9 10 11 123 4 5 6

6 18 8 20 28 39 29 37 26 76 32 74 89

13

66

66

C
h

ild

Pa
re

n
t

The insertion algorithm

Insert x at the end of the array, let child be its
index and parent = (child-1)/2

While child > 0 and array[parent] >
array[child]:
● Swap array[parent] and array[child]
● Set child = parent and parent = (child-1)/2

Does many swap operations! Moves the new
element many times in the heap.

Just the insertion algorithm from before, but
using an array to represent the tree!

An optimisation from the book

Insert x null at the end of the array, let
child be its index and parent = (child-
1)/2

While child > 0 and array[parent] >
array[child] array[parent] > x:
● Swap array[parent] and array[child]

Set array[child] = array[parent]
● Set child = parent and parent = (child-1)/2

Finally, set array[parent] = x

Makes a space for x and then puts it there

array[child] was
always x before

Optimised insertion

Step 1: increase the size of the array, set
child to the final index

6

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6

6 18 29 20 28 39 66 37 26 76 32 74 89

13

C
h
ild

Optimised insertion

Step 2: compute parent = (child-1)/2
6

18 29

37 26 76 32 74 89

20 28 39 66

0 1 2 7 8 9 10 11 123 4 5 6

6 18 29 20 28 39 66 37 26 76 32 74 89

13

C
h
ild

Pa
re

n
t

Optimised insertion

Step 3: if array[parent] > x (8 here),
move parent downwards

6

18 29

37 26 76 32 74 89

20 28 39

0 1 2 7 8 9 10 11 123 4 5 6

6 18 29 20 28 39 37 26 76 32 74 89

13

66

C
h
ild

Pa
re

n
t

66

Optimised insertion

Step 4: set child = parent, parent =
(child 1) / 2– , and repeat

6

18 29

37 26 76 32 74 89

20 28 39

0 1 2 7 8 9 10 11 123 4 5 6

6 18 29 20 28 39 37 26 76 32 74 89

13

66

66

C
h

ild

Pa
re

n
t

Optimised insertion

Step 4: set child = parent, parent =
(child 1) / 2– , and repeat

6

18

37 26 76 32 74 89

20 28 39 29

0 1 2 7 8 9 10 11 123 4 5 6

6 18 20 28 39 29 37 26 76 32 74 89

13

66

66

C
h

ild

Pa
re

n
t

Optimised insertion

Step 4: set child = parent, parent =
(child 1) / 2– , and repeat

6

18

37 26 76 32 74 89

20 28 39 29

0 1 2 7 8 9 10 11 123 4 5 6

6 18 20 28 39 29 37 26 76 32 74 89

13

66

66

C
h
ild

Pa
re

n
t

Optimised insertion

Step 5: write x into position child

6

18

37 26 76 32 74 89

20 28 39 29

0 1 2 7 8 9 10 11 123 4 5 6

6 18 20 28 39 29 37 26 76 32 74 89

13

66

66

C
h
ild

Pa
re

n
t

8

8

Complexity

The depth of the tree is O(log n)

So O(log n) swaps for insert and
deleteMin

So O(1) findMin, O(log n) insert, O(log n)
deleteMin

An extra operation: decreaseKey

What if you want to decrease the value of an
element? (This pops up in some algorithms, and
lab 2)

Step 1: alter the element. Might break the heap
invariant, because the element might be smaller
than its parent. So...

Step 2: sift the element up

However, you need to know the index of the
element to sift it up! Solution: maintain a multimap
from elements to their indices, and update it
whenever you modify the heap

Heapsort

It's quite easy to sort a list using a heap:
● add all the list elements to an empty heap
● repeatedly find and remove the smallest element

from the heap, and add it to the result list

(this is a kind of selection sort)

However, this algorithm is not in-place.
Heapsort uses the same idea, but without
allocating any extra memory.

Heapsort

It's quite easy to sort a list using a heap:
● add all the list elements to an empty heap
● repeatedly find and remove the smallest element

from the heap, and add it to the result list

(this is a kind of selection sort)

However, this algorithm is not in-place.
Heapsort uses the same idea, but without
allocating any extra memory.

Heapsort, in-place

We will build a max heap, a heap where you can find and
delete the maximum element instead of the minimum
● Simple change to heap operations

First turn array into a max heap, in-place

Now, we have a heap; how to turn it into a sorted array?
● Swap the maximum (first) element with the last element
● Reduce the heap's size by 1, so the heap no longer includes the maximum

element
● Sift the first element down

This has the effect of deleting the biggest element and
putting it at the end of the array – at every stage, the
beginning of the array is a heap and the end contains sorted
data

Trace of heapsort

89

76 74

37 32 39 66

20 26 18 28 29 6

First build a heap (not shown)

Trace of heapsort

89

76 74

37 32 39 66

20 26 18 28 29 6

Step 1: swap maximum and last element;
decrease size of heap by 1

Trace of heapsort

6

76 74

37 32 39 66

20 26 18 28 29 89

Step 2: sift first element down

Trace of heapsort

76

6 74

37 32 39 66

20 26 18 28 29 89

Step 2: sift first element down

Trace of heapsort

76

37 74

6 32 39 66

20 26 18 28 29 89

Step 2: sift first element down

Trace of heapsort

76

37 74

26 32 39 66

20 6 18 28 29 89

Step 2: sift first element down

Trace of heapsort

76

37 74

26 32 39 66

20 6 18 28 29 89

Trace of heapsort

76

37 74

26 32 39 66

20 6 18 28 29 89

Step 1: swap maximum and last element;
decrease size of heap by 1

Trace of heapsort

29

37 74

26 32 39 66

20 6 18 28 76 89

Step 2: sift first element down

Trace of heapsort

74

37 29

26 32 39 66

20 6 18 28 76 89

Step 2: sift first element down

Trace of heapsort

74

37 66

26 32 39 29

20 6 18 28 76 89

Step 2: sift first element down

Trace of heapsort

74

37 66

26 32 39 29

20 6 18 28 76 89

Trace of heapsort

74

37 66

26 32 39 29

20 6 18 28 76 89

Step 1: swap maximum and last element;
decrease size of heap by 1

Trace of heapsort

28

37 66

26 32 39 29

20 6 18 74 76 89

Step 2: sift first element down

Trace of heapsort

66

37 28

26 32 39 29

20 6 18 74 76 89

Step 2: sift first element down

Trace of heapsort

66

37 39

26 32 28 29

20 6 18 74 76 89

Step 2: sift first element down

Trace of heapsort

66

37 39

26 32 28 29

20 6 18 74 76 89

Trace of heapsort

66

37 39

26 32 28 29

20 6 18 74 76 89

Step 1: swap maximum and last element;
decrease size of heap by 1

Trace of heapsort

18

37 39

26 32 28 29

20 6 66 74 76 89

Step 2: sift first element down

Trace of heapsort

39

37 18

26 32 28 29

20 6 66 74 76 89

Step 2: sift first element down

Trace of heapsort

39

37 29

26 32 28 18

20 6 66 74 76 89

Step 2: sift first element down

Trace of heapsort

39

37 29

26 32 28 18

20 6 66 74 76 89

Trace of heapsort

39

37 29

26 32 28 18

20 6 66 74 76 89

Step 1: swap maximum and last element;
decrease size of heap by 1

Trace of heapsort

6

37 29

26 32 28 18

20 39 66 74 76 89

Step 2: sift first element down

Trace of heapsort

37

6 29

26 32 28 18

20 39 66 74 76 89

Step 2: sift first element down

Trace of heapsort

37

32 29

26 6 28 18

20 39 66 74 76 89

Step 2: sift first element down

Trace of heapsort

37

32 29

26 6 28 18

20 39 66 74 76 89

Trace of heapsort

37

32 29

26 6 28 18

20 39 66 74 76 89

Step 1: swap maximum and last element;
decrease size of heap by 1

Trace of heapsort

20

32 29

26 6 28 18

37 39 66 74 76 89

Step 2: sift first element down

Trace of heapsort

32

20 29

26 6 28 18

37 39 66 74 76 89

Step 2: sift first element down

Trace of heapsort

32

26 29

20 6 28 18

37 39 66 74 76 89

Step 2: sift first element down

Trace of heapsort

32

26 29

20 6 28 18

37 39 66 74 76 89

Trace of heapsort

32

26 29

20 6 28 18

37 39 66 74 76 89

Step 1: swap maximum and last element;
decrease size of heap by 1

Trace of heapsort

18

26 29

20 6 28 32

37 39 66 74 76 89

Step 2: sift first element down

Trace of heapsort

29

26 18

20 6 28 32

37 39 66 74 76 89

Step 2: sift first element down

Trace of heapsort

29

26 28

20 6 18 32

37 39 66 74 76 89

Step 2: sift first element down

Trace of heapsort

29

26 28

20 6 18 32

37 39 66 74 76 89

Trace of heapsort

29

26 28

20 6 18 32

37 39 66 74 76 89

Step 1: swap maximum and last element;
decrease size of heap by 1

Trace of heapsort

18

26 28

20 6 29 32

37 39 66 74 76 89

Step 2: sift first element down

Trace of heapsort

28

26 18

20 6 29 32

37 39 66 74 76 89

Step 2: sift first element down

Trace of heapsort

28

26 18

20 6 29 32

37 39 66 74 76 89

Trace of heapsort

28

26 18

20 6 29 32

37 39 66 74 76 89

Step 1: swap maximum and last element;
decrease size of heap by 1

Trace of heapsort

6

26 18

20 28 29 32

37 39 66 74 76 89

Step 2: sift first element down

Trace of heapsort

26

6 18

20 28 29 32

37 39 66 74 76 89

Step 2: sift first element down

Trace of heapsort

26

20 18

6 28 29 32

37 39 66 74 76 89

Step 2: sift first element down

Trace of heapsort

26

20 18

6 28 29 32

37 39 66 74 76 89

Trace of heapsort

26

20 18

6 28 29 32

37 39 66 74 76 89

Step 1: swap maximum and last element;
decrease size of heap by 1

Trace of heapsort

6

20 18

26 28 29 32

37 39 66 74 76 89

Step 2: sift first element down

Trace of heapsort

20

6 18

26 28 29 32

37 39 66 74 76 89

Step 2: sift first element down

Trace of heapsort

20

6 18

26 28 29 32

37 39 66 74 76 89

Trace of heapsort

20

6 18

26 28 29 32

37 39 66 74 76 89

Step 1: swap maximum and last element;
decrease size of heap by 1

Trace of heapsort

18

6 20

26 28 29 32

37 39 66 74 76 89

Step 2: sift first element down

Trace of heapsort

18

6 20

26 28 29 32

37 39 66 74 76 89

Trace of heapsort

18

6 20

26 28 29 32

37 39 66 74 76 89

Step 1: swap maximum and last element;
decrease size of heap by 1

Trace of heapsort

6

18 20

26 28 29 32

37 39 66 74 76 89

Step 2: sift first element down

Trace of heapsort

6

18 20

26 28 29 32

37 39 66 74 76 89

Done!

Building a heap

The first element is already a one-element heap
● Sift element two up – now elements one and two form a

valid heap
● Sift element three up – now the first three elements form a

valid heap
● …and so on

Each sift is O(log n) – so total O(n log n)

In code:

for (int i = 1; i < n; i++)
 siftUp(i);

Building a heap

Better approach: instead of looping
forwards through the array and sifting up,
loop backwards and sift down:
for (int i = n / 2; i > 0; i--)
 siftDown(i-1);

Gives O(n) instead of O(n log n)
complexity! (See book 21.3)

Complexity of heapsort

Building the heap: O(n)

Then does n deleteMins, each O(log n)
complexity

Total: O(n log n)

Summary

Priority queues: insert, findMin, deleteMin

Binary heaps: O(log n) insert, O(1) findMin, O(log n)
deleteMin
● A binary tree with the heap property, represented as an array

Heapsort: build a max heap, repeatedly remove last
element and place at end of array
● Can be done in-place, O(n log n)

In fact, heaps were originally invented for heapsort!

	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105

