
  

Priority queues,
binary heaps,
and heapsort

(6.9, 21.1 – 21.5)



  

Priority queue

A priority queue is an ADT supporting 
three operations:
● insert: add an element
● findMin: return the smallest element
● deleteMin: remove the smallest element

Allows you to maintain a set of elements 
while always knowing the smallest one

Java: PriorityQueue<E> class defining 
add, element and remove



  

Implementing a priority queue

Several possible ways:
● An unsorted array?
● A sorted array?
● A binary search tree?
● A balanced binary search tree?

A nicer way: a binary heap



  

The heap property

A tree satisfies the heap property if the 
value of each node is less than (or equal 
to) the value of its children:

What can we say about the root node?
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Root node is the
smallest –

can do findMin
in O(1) time



  

Binary heap

A binary heap is a complete binary tree that 
satisfies the heap property:

Note: it is not a binary search tree!

Complete means that all levels except the 
bottom one are full, and the bottom level is 
filled from left to right (see diagram)
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Binary heap invariant

The binary heap invariant:
● The tree must be complete
● It must have the heap property (each node is less 

than or equal to its children)

Remember, all our operations must 
preserve this invariant

(Why this invariant? See later!)



  

Adding an element to a binary heap

Step 1: insert the element at the next 
empty position in the tree

This might break the heap invariant!

In this case, 12 is less than 66, its parent.
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Adding an element to a binary heap

Step 2: if the new element is less than its 
parent, swap it with its parent

The invariant is still broken, since 12 is 
less than 29, its new parent
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Adding an element to a binary heap

Repeat step 2 until the new element is 
greater than or equal to its parent.

Now 12 is in its right place, and the 
invariant is restored. (Think about why 
this algorithm restores the invariant.)
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Why this works

At every step, the heap property almost 
holds except that the new element might be 
less than its parent

After swapping the element and its parent, 
still only the new element can be in the 
wrong place (why?)
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Removing the minimum element

Step 1: replace the root element with the 
last element in the heap

The invariant is broken, because 66 is 
greater than its children
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Removing the minimum element

Step 2: if the moved element is greater 
than its children, swap it with its least 
child

(Why not its greatest child?)
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Removing the minimum element

Step 3: repeat until the moved element is 
less than or equal to its children
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Sifting

Two useful operations in implementing a 
heap

Sift up: if an element might be less than its 
parent, i.e. “too low” (used in insert)
● Repeatedly swap the element with its parent

Sift down: if an element might be greater 
than its children, i.e. “too high” (used in 
deleteMin)
● Repeatedly swap the element with its least child



  

Summary so far

Binary heap: complete binary tree where 
every node is less than or equal to its 
children

Minimum is root node

Insert: add to end of tree and sift up 
(called percolate up in book)

Delete minimum: swap with final element 
and sift down (called percolate down in 
book)



  

Binary heaps are arrays!

A binary heap is really implemented 
using an array: 8
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0 1 2 7 8 9 10 11 123 4 5 6

8 18 29 20 28 39 66 37 26 76 32 74 89



  

Child positions
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Parent position
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Why the binary heap invariant

The binary heap invariant: the tree is 
complete and satisfies the heap property
● Because of the heap property, we can find the 

minimum element in O(1) time
● Because the tree is complete, we can represent a 

heap of n items with an array of size n



  

Warning

We are using 0-based arrays, the obvious choice in 
Java

The book, for some reason, uses 1-based arrays (and 
later switches to 0-based arrays)!

In a heap implemented using a 1-based array:
● the left child of index i is index 2i
● the right child is index 2i+1
● the parent is index i/2

Be careful when doing the lab!



  

Reminder: inserting into a binary heap

To insert an element into a binary heap:
● Add the new element at the end of the heap
● Sift the element up: while the element is less than 

its parent, swap it with its parent

We can just as well implement this using 
the array representation! Just need to use 
index calculations instead of following 
left/right/parent links.



  

Inserting into a binary heap

Step 1: add the new element to the end of 
the array, set child to its index
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Inserting into a binary heap

Step 2: compute parent = (child-1)/2
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Inserting into a binary heap

Step 3: if array[parent] > array[child], 
swap them 6
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Inserting into a binary heap

Step 4: set child = parent, parent = 
(child  1) / 2– , and repeat
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Inserting into a binary heap

Step 4: set child = parent, parent = 
(child  1) / 2– , and repeat
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The insertion algorithm

Insert x at the end of the array, let child be its 
index and parent = (child-1)/2

While child > 0 and array[parent] > 
array[child]:
● Swap array[parent] and array[child]
● Set child = parent and parent = (child-1)/2

Does many swap operations! Moves the new 
element many times in the heap.

Just the insertion algorithm from before, but 
using an array to represent the tree!



  

An optimisation from the book

Insert x null at the end of the array, let 
child be its index and parent = (child-
1)/2

While child > 0 and array[parent] > 
array[child] array[parent] > x:
● Swap array[parent] and array[child]

Set array[child] = array[parent]
● Set child = parent and parent = (child-1)/2

Finally, set array[parent] = x

Makes a space for x and then puts it there

array[child] was
always x before



  

Optimised insertion

Step 1: increase the size of the array, set 
child to the final index
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Optimised insertion

Step 2: compute parent = (child-1)/2
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Optimised insertion

Step 3: if array[parent] > x (8 here), 
move parent downwards
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Optimised insertion

Step 4: set child = parent, parent = 
(child  1) / 2– , and repeat
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Optimised insertion

Step 4: set child = parent, parent = 
(child  1) / 2– , and repeat
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Optimised insertion

Step 4: set child = parent, parent = 
(child  1) / 2– , and repeat

6

18

37 26 76 32 74 89

20 28 39 29

0 1 2 7 8 9 10 11 123 4 5 6

6 18 20 28 39 29 37 26 76 32 74 89

13

66

66

C
h
ild

Pa
re

n
t



  

Optimised insertion

Step 5: write x into position child
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Complexity

The depth of the tree is O(log n)

So O(log n) swaps for insert and 
deleteMin

So O(1) findMin, O(log n) insert, O(log n) 
deleteMin



  

An extra operation: decreaseKey

What if you want to decrease the value of an 
element? (This pops up in some algorithms, and 
lab 2)

Step 1: alter the element. Might break the heap 
invariant, because the element might be smaller 
than its parent. So...

Step 2: sift the element up

However, you need to know the index of the 
element to sift it up! Solution: maintain a multimap 
from elements to their indices, and update it 
whenever you modify the heap



  

Heapsort

It's quite easy to sort a list using a heap:
● add all the list elements to an empty heap
● repeatedly find and remove the smallest element 

from the heap, and add it to the result list

(this is a kind of selection sort)

However, this algorithm is not in-place. 
Heapsort uses the same idea, but without 
allocating any extra memory.
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Heapsort, in-place

We will build a max heap, a heap where you can find and 
delete the maximum element instead of the minimum
● Simple change to heap operations

First turn array into a max heap, in-place

Now, we have a heap; how to turn it into a sorted array?
● Swap the maximum (first) element with the last element
● Reduce the heap's size by 1, so the heap no longer includes the maximum 

element
● Sift the first element down

This has the effect of deleting the biggest element and 
putting it at the end of the array – at every stage, the 
beginning of the array is a heap and the end contains sorted 
data



  

Trace of heapsort

89

76 74

37 32 39 66
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First build a heap (not shown)



  

Trace of heapsort
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Step 1: swap maximum and last element; 
decrease size of heap by 1



  

Trace of heapsort
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Trace of heapsort
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Trace of heapsort
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Trace of heapsort
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Step 1: swap maximum and last element; 
decrease size of heap by 1



  

Trace of heapsort
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Trace of heapsort
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Trace of heapsort
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Trace of heapsort
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Trace of heapsort
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Step 1: swap maximum and last element; 
decrease size of heap by 1



  

Trace of heapsort
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Trace of heapsort

66

37 28

26 32 39 29

20 6 18 74 76 89

Step 2: sift first element down



  

Trace of heapsort
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Trace of heapsort
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Trace of heapsort
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Step 1: swap maximum and last element; 
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Trace of heapsort
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Step 2: sift first element down



  

Trace of heapsort
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Trace of heapsort
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Trace of heapsort
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Step 1: swap maximum and last element; 
decrease size of heap by 1



  

Trace of heapsort
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Trace of heapsort
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Trace of heapsort
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Trace of heapsort
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Step 1: swap maximum and last element; 
decrease size of heap by 1



  

Trace of heapsort
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Trace of heapsort
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Trace of heapsort
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Trace of heapsort
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Trace of heapsort
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Step 1: swap maximum and last element; 
decrease size of heap by 1



  

Trace of heapsort
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Trace of heapsort

29

26 18

20 6 28 32

37 39 66 74 76 89
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Trace of heapsort
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Step 2: sift first element down



  

Trace of heapsort

29

26 28

20 6 18 32

37 39 66 74 76 89



  

Trace of heapsort
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Step 1: swap maximum and last element; 
decrease size of heap by 1



  

Trace of heapsort
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Trace of heapsort
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Trace of heapsort

28

26 18

20 6 29 32

37 39 66 74 76 89



  

Trace of heapsort
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Step 1: swap maximum and last element; 
decrease size of heap by 1



  

Trace of heapsort
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Step 2: sift first element down



  

Trace of heapsort
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Step 2: sift first element down



  

Trace of heapsort
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Step 2: sift first element down



  

Trace of heapsort
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Trace of heapsort
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Step 1: swap maximum and last element; 
decrease size of heap by 1



  

Trace of heapsort
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Trace of heapsort
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Trace of heapsort
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Trace of heapsort
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Step 1: swap maximum and last element; 
decrease size of heap by 1



  

Trace of heapsort
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Step 2: sift first element down



  

Trace of heapsort

18

6 20

26 28 29 32

37 39 66 74 76 89



  

Trace of heapsort
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Step 1: swap maximum and last element; 
decrease size of heap by 1



  

Trace of heapsort
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Step 2: sift first element down



  

Trace of heapsort

6

18 20

26 28 29 32

37 39 66 74 76 89

Done!



  

Building a heap

The first element is already a one-element heap
● Sift element two up – now elements one and two form a 

valid heap
● Sift element three up – now the first three elements form a 

valid heap
● …and so on

Each sift is O(log n) – so total O(n log n)

In code:

for (int i = 1; i < n; i++)
  siftUp(i);



  

Building a heap

Better approach: instead of looping 
forwards through the array and sifting up, 
loop backwards and sift down:
for (int i = n / 2; i > 0; i--)
  siftDown(i-1);

Gives O(n) instead of O(n log n) 
complexity! (See book 21.3)



  

Complexity of heapsort

Building the heap: O(n)

Then does n deleteMins, each O(log n) 
complexity

Total: O(n log n)



  

Summary

Priority queues: insert, findMin, deleteMin

Binary heaps: O(log n) insert, O(1) findMin, O(log n) 
deleteMin
● A binary tree with the heap property, represented as an array

Heapsort: build a max heap, repeatedly remove last 
element and place at end of array
● Can be done in-place, O(n log n)

In fact, heaps were originally invented for heapsort!
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