
  

Sorting

Weiss chapter 7.5, 8.5, 8.6, 8.8
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Quicksort – a reminder

5 3 9 2 7 3 2 1

3 3 2 2 1 4 5 9 8 7

1 2 2 3 3 4 5 7 8 9

Quicksort Quicksort

Partition
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Partitioning algorithm

1. Pick a pivot (here 5)

5 3 9 2 7 3 2 1
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Partitioning algorithm

2. Set two indexes, low and high

Idea: everything to the left of low is less 
than the pivot (coloured yellow), 
everything to the right of high is greater 
than the pivot (green)

5 3 9 2 7 3 2 1

low high
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Partitioning algorithm

3. Move low right until you find 
something greater than the pivot

5 3 9 2 7 3 2 1

low high
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Partitioning algorithm

3. Move low right until you find 
something greater than the pivot

while (a[low] < pivot) low++;

5 3 9 2 7 3 2 1

highlow
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Partitioning algorithm

3. Move low right until you find 
something greater than the pivot

while (a[low] < pivot) low++;

5 3 9 2 7 3 2 1

low high



  

Partitioning algorithm

3. Move high left until you find 
something less than the pivot

while (a[high] < pivot) high--;

485 3 9 2 7 3 2 1

low high



  

Partitioning algorithm

4. Swap them!

swap(a[low], a[high]);

985 3 4 2 7 3 2 1

low high



  

Partitioning algorithm

5. Advance low and high and repeat

low++; high--;

985 3 4 2 7 3 2 1

low high



  

Partitioning algorithm

5. Advance low and high and repeat

while (a[low] < pivot) low++;

985 3 4 2 7 3 2 1

low high



  

Partitioning algorithm

5. Advance low and high and repeat

985 3 4 2 7 3 2 1

low high



  

Partitioning algorithm

5. Advance low and high and repeat

while (a[high] < pivot) high++;

985 3 4 2 7 3 2 1

low high



  

Partitioning algorithm

5. Advance low and high and repeat

swap(a[low], a[high]);

915 3 4 2 7 3 2 8

low high



  

Partitioning algorithm

5. Advance low and high and repeat

low++; high--;

915 3 4 2 7 3 2 8

low high



  

Partitioning algorithm

5. Advance low and high and repeat

915 3 4 2 7 3 2 8

low high



  

Partitioning algorithm

5. Advance low and high and repeat

915 3 4 2 7 3 2 8

low high



  

Partitioning algorithm

5. Advance low and high and repeat

915 3 4 2 2 3 7 8

low high



  

Partitioning algorithm

5. Advance low and high and repeat

915 3 4 2 2 3 7 8

low

high



  

Partitioning algorithm

5. Advance low and high and repeat

915 3 4 2 2 3 7 8

low

high



  

Partitioning algorithm

6. When low and high have crossed, 
we are finished!

But the pivot is in the
wrong place.

915 3 4 2 2 3 7 8

low

high



  

Partitioning algorithm

7. Last step: swap pivot with high

913 3 4 2 2 5 7 8

low

high



  

Partitioning algorithm

int pivot = a[0];
int low = 1;
int high = a.length  1;–
while(low >= high) {
  while(low <= high && a[low] < pivot)
    low++;
  while(low <= high && a[high] > pivot)
    high--;
  if (low <= high) {
    swap(a[low], a[high]);
    low++; high--;
  }
}
swap(a[0], a[high]);
// Pivot is now at index high.



  

Details

1. What to do if the pivot is not the first 
element?
● Swap the pivot with the first element before 

starting partitioning!



  

Details

2. What happens if the array contains 
many duplicates?
● Notice that we only advance a[low] as long as 

a[low] < pivot
● If a[low] == pivot we stop, same for a[high]
● If the array contains just one element over 

and over again, low and high will advance at 
the same rate

● Hence we get equal-sized partitions



  

Pivot

Which pivot should we pick?
● First element: gives O(n2) behaviour for 

already-sorted lists
● Median-of-three: pick first, middle and last 

element of the array and pick the median of 
those three

● Pick pivot at random: gives O(n log n) expected 
(probabilistic) complexity



  

Quicksort

Can be very fast, but many 
implementation details to get right!
● Must choose a good pivot to avoid O(n2) case
● Must take care with duplicates
● Switch to insertion sort for small arrays to get 

better constant factors



  

Mergesort

We can merge two sorted lists into one 
in linear time:

792 3 5 8 1 2 3 4

7 92 3 5 81 2 3 4



  

Merging

merge :: Ord a => [a]  [a]  [a]→ →
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys)
  | x < y = x:merge xs (y:ys)
  | otherwise = y:merge (x:xs) ys



  

Mergesort

Another divide-and-conquer algorithm

To mergesort a list:
● Split the list into two equal parts
● Recursively mergesort the two parts
● Merge the two sorted lists together



  

Mergesort

1. Split the list into two equal parts

485 3 9 2 7 3 2 1

85 3 9 2 47 3 2 1



  

Mergesort

2. Recursively mergesort the two parts

85 3 9 2 47 3 2 1

853 92 4 7321



  

Mergesort

3. Merge the two sorted lists together

792 3 5 8 1 2 3 4

7 92 3 5 81 2 3 4



  

Mergesort in Haskell

sort [] = []
sort [x] = [x]
sort xs = merge (sort ys) (sort zs)
  where
    (ys, zs) = splitInHalf xs



  

Split in Haskell

splitInHalf :: [a]  ([a], [a])→
splitInHalf xs =
  (take n xs, drop n xs)
  where
    n = length xs `div` 2

(traverses the list three times – once for 
take, once for drop, once for length. 
Better implementation: exercise!)



  

Complexity analysis

Mergesort's divide-and-conquer 
approach is similar to quicksort

But it always splits the list into equally-
sized pieces!

Hence O(n log n), just like the best case 
for quicksort – but this is the worst case 
for mergesort



  

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

log n
“levels”

O(n) time per level

Total time is
O(n log n)!



  

Mergesort vs quicksort

Mergesort:
● Not in-place
● O(n log n)
● Works on Haskell lists (sequential access)

Quicksort:
● In-place
● O(n log n) but O(n2) if you are not careful
● Works on arrays only (random access)



  

Can we do better than O(n log n)?

It turns out that O(n log n) is the best 
we can do if our sorting algorithm is 
based on comparing elements.

But how do we prove a negative (there 
is no algorithm better than O(n log n))?

Let's look at a simpler example first.



  

Can we do better than O(n log n)?

I am thinking of a number between 1 and 
3. Can you guess what it is with one 
yes/no question?

No, of course not.

Why?

Suppose if I answered yes you would 
guess 1, and if I answered no you would 
guess 2. You would never guess 3!

There are 3 numbers, but only 2 answers.



  

Can we do better than O(n log n)?

I am thinking of a number between 1 
and 5. Can you guess what it is with two 
yes/no questions?

No.

Why?

There are 5 possible numbers, but only 
4 possible answers to your two 
questions (yes/yes, yes/no, no/yes, 
no/no).



  

Can we do better than O(n log n)?

General principle:

If I am thinking of one of n objects, and 
you have to guess which one, there 
must be at least n possible outcomes of 
your questioning.

If the questions are yes/no, you have to 
ask at least log n questions.



  

Can we do better than O(n log n)?

I have an array of length n, and you have 
to guess what order it is in. You may ask 
yes/no questions: “is this element less 
than that element?”

There are n! permutations of n elements

So you need to perform log (n!) 
comparisons.

But how much is log (n!), anyway?



  

Can we do better than O(n log n)?

log (n!)
= log (n × (n-1) × … × 1)
= log n + log (n-1) × … × log 1
≤ log n + log n + … + log n (n times)
= n log n

So log (n!) ≤ n log n



  

Can we do better than O(n log n)?

log (n!)
= log (n × (n-1) × … (n/2+1) × … × 1)
= log n + log (n-1) + … + log (n/2+1) + … + log 1
≥ log n + log (n-1) + … + log (n/2+1)
≥ log (n/2) + log (n/2) + … + log (n/2) (n/2) times)
= (n/2) log (n/2)
= (n/2) (log n – log 2)
= (n/2) (log n – 1)

So log (n!) ≤ n log n and log (n!) ≥ (n/2) (log n – 1)
So log (n!) = O (n log n)
So comparison-based sorting must take at least O(n 
log n) comparisons!



  

O(n) sorting algorithms

O(n log n) bound only applies for 
comparison-based sorting!

Suppose I want to sort an array of integers, 
all between 0 and k-1.

Make an array of k integers, and count how 
many times each value appears in the input 
array. Then produce the right number of 
each value. This is called counting sort.

Only practical if k is small. If it is big, use 
bucket sort. (See Wikipedia)



  

Counting sort

// Assumes all integers are between 0 and k-1
void sort(int[] a, int k) {
   int counts[k];
   // Count how many times each value occurs
   for(int x: a) counts[x]++;
   // Write the results out
   int idx = 0;
   for(int i = 0; i < k; i++) {
      for (int j = 0; j < counts[i]; j++)
         a[idx++] = i;
}



  

The best sorting algorithm?

The ideal sorting algorithm should be:
● O(n log n) worst case
● O(n) when input is almost sorted
● Simple
● In-place

No sorting algorithm has all four!



  

Simple algorithms

Bubblesort is just bad

Selection sort: simple but not too fast

Insertion sort: O(n2) worst case, O(n) on 
sorted lists
● Because insertion is O(1) best case
● Insertion sort is the fastest algorithm of all on 

small arrays and almost-sorted arrays!



  

Fancier algorithms

Quicksort – normally O(n log n), but 
always danger of O(n2). Very fast 
normally.

Introsort – quicksort, but switch to 
heapsort if the recursion depth gets too 
big (used in some C++ compilers)

Heapsort (later in the course) – always 
O(n log n)



  

Mergesort

Always O(n log n), but not in-place

“Smooth mergesort”: split list into 
already-sorted runs, merge those. Gives 
O(n) on sorted lists (used in GHC)

Timsort: super-optimised smooth 
mergesort, used in Python and Java



  

O(n) sorting algorithms

Special cases: counting sort, bucket 
sort, radix sort, ...



  

Complexity of recursive algorithms



  

Calculating complexity

Let T(n) be the time mergesort takes on 
a list of size n

Then write down a recurrence relation:

T(n) = O(n) + 2T(n/2)

Time to sort a
list of size n

Linear amount
of time spent in

splitting +
merging

Plus two
recursive calls

of size n/2



  

Calculating complexity

Procedure for calculating complexity 
of a recursive algorithm:
● Write down a recurrence relation
● Solve the recurrence relation to get a formula 

for T(n) (difficult!)

We will see solutions for a few 
recurrence relations only



  

Calculating complexity

T(n) = O(1) + T(n-1): T(n) = O(n)

T(n) = O(n) + T(n-1): T(n) = O(n2)

T(n) = O(1) + T(n/2): T(n) = O(log n)

T(n) = O(n) + T(n/2): T(n) = O(n)

How do we calculate these?



  

Expanding out recurrence relations

T(n) = 1 + T(n-1):

T(n) = 1 + T(n-1)

= 2 + T(n-2)

= 3 + T(n-3)

= …

= n + T(n-n)

= n + T(0)

= O(n)



  

Expanding out recurrence relations

T(n) = n + T(n-1):

T(n) = n + T(n-1)

= n + (n-1) + T(n-2)

= n + (n-1) + (n-2) + T(n-3)

= …

= n + (n-1) + (n-2) + … + 1

= n(n+1) / 2

= O(n2)



  

Expanding out recurrence relations

T(n) = 1 + T(n/2):

T(n) = 1 + T(n/2)

= 2 + T(n/4)

= 3 + T(n/8)

= …

= log n + T(n/n)

= log n + T(1)

= O(log n)



  

Expanding out recurrence relations

T(n) = n + T(n/2):

T(n) = n + T(n/2)

= n + n/2 + T(n/4)

= n + n/2 + n/4 + T(n/8)

= …

= n + n/2 + n/4 + …

< 2n

= O(n)



  

More rules of thumb

Rule of thumb for functions that 
recurse once:
● Count how deep the recursion can get, then 

multiply by the work done per level

T(n) = f(n) + T(n-1): T(n) = O(n × f(n))

T(n) = f(n) + T(n/2): T(n) = O(f(n) log 
n)

This occasionally gives overestimates!



  

Divide-and-conquer algorithms

T(n) = O(n) + 2T(n/2): T(n) = O(n log n)
● This is mergesort! There is a nice proof in the 

book (theorem 7.4).

T(n) = 2T(n-1): T(n) = O(2n)
● Because 2n recursive calls of depth n

Other cases: master theorem (Wikipedia) 
or theorem 7.5 from book
● Kind of fiddly – best to just look it up if you need 

it



  

Complexity of recursive functions

Basic idea – recurrence relations

Easy enough to write down, hard to solve
● One technique: expand out the recurrence and see what 

happens
● Multiply work per level with number of levels
● Drawing a diagram (like for quicksort) can help!

Master theorem for divide and conquer

A few special cases work for most algorithms – 
remember those
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