

Sorting

Weiss chapter 7.5, 8.5, 8.6, 8.8

48

Quicksort – a reminder

5 3 9 2 7 3 2 1

3 3 2 2 1 4 5 9 8 7

1 2 2 3 3 4 5 7 8 9

Quicksort Quicksort

Partition

48

Partitioning algorithm

1. Pick a pivot (here 5)

5 3 9 2 7 3 2 1

48

Partitioning algorithm

2. Set two indexes, low and high

Idea: everything to the left of low is less
than the pivot (coloured yellow),
everything to the right of high is greater
than the pivot (green)

5 3 9 2 7 3 2 1

low high

48

Partitioning algorithm

3. Move low right until you find
something greater than the pivot

5 3 9 2 7 3 2 1

low high

48

Partitioning algorithm

3. Move low right until you find
something greater than the pivot

while (a[low] < pivot) low++;

5 3 9 2 7 3 2 1

highlow

48

Partitioning algorithm

3. Move low right until you find
something greater than the pivot

while (a[low] < pivot) low++;

5 3 9 2 7 3 2 1

low high

Partitioning algorithm

3. Move high left until you find
something less than the pivot

while (a[high] < pivot) high--;

485 3 9 2 7 3 2 1

low high

Partitioning algorithm

4. Swap them!

swap(a[low], a[high]);

985 3 4 2 7 3 2 1

low high

Partitioning algorithm

5. Advance low and high and repeat

low++; high--;

985 3 4 2 7 3 2 1

low high

Partitioning algorithm

5. Advance low and high and repeat

while (a[low] < pivot) low++;

985 3 4 2 7 3 2 1

low high

Partitioning algorithm

5. Advance low and high and repeat

985 3 4 2 7 3 2 1

low high

Partitioning algorithm

5. Advance low and high and repeat

while (a[high] < pivot) high++;

985 3 4 2 7 3 2 1

low high

Partitioning algorithm

5. Advance low and high and repeat

swap(a[low], a[high]);

915 3 4 2 7 3 2 8

low high

Partitioning algorithm

5. Advance low and high and repeat

low++; high--;

915 3 4 2 7 3 2 8

low high

Partitioning algorithm

5. Advance low and high and repeat

915 3 4 2 7 3 2 8

low high

Partitioning algorithm

5. Advance low and high and repeat

915 3 4 2 7 3 2 8

low high

Partitioning algorithm

5. Advance low and high and repeat

915 3 4 2 2 3 7 8

low high

Partitioning algorithm

5. Advance low and high and repeat

915 3 4 2 2 3 7 8

low

high

Partitioning algorithm

5. Advance low and high and repeat

915 3 4 2 2 3 7 8

low

high

Partitioning algorithm

6. When low and high have crossed,
we are finished!

But the pivot is in the
wrong place.

915 3 4 2 2 3 7 8

low

high

Partitioning algorithm

7. Last step: swap pivot with high

913 3 4 2 2 5 7 8

low

high

Partitioning algorithm

int pivot = a[0];
int low = 1;
int high = a.length 1;–
while(low >= high) {
 while(low <= high && a[low] < pivot)
 low++;
 while(low <= high && a[high] > pivot)
 high--;
 if (low <= high) {
 swap(a[low], a[high]);
 low++; high--;
 }
}
swap(a[0], a[high]);
// Pivot is now at index high.

Details

1. What to do if the pivot is not the first
element?
● Swap the pivot with the first element before

starting partitioning!

Details

2. What happens if the array contains
many duplicates?
● Notice that we only advance a[low] as long as

a[low] < pivot
● If a[low] == pivot we stop, same for a[high]
● If the array contains just one element over

and over again, low and high will advance at
the same rate

● Hence we get equal-sized partitions

Pivot

Which pivot should we pick?
● First element: gives O(n2) behaviour for

already-sorted lists
● Median-of-three: pick first, middle and last

element of the array and pick the median of
those three

● Pick pivot at random: gives O(n log n) expected
(probabilistic) complexity

Quicksort

Can be very fast, but many
implementation details to get right!
● Must choose a good pivot to avoid O(n2) case
● Must take care with duplicates
● Switch to insertion sort for small arrays to get

better constant factors

Mergesort

We can merge two sorted lists into one
in linear time:

792 3 5 8 1 2 3 4

7 92 3 5 81 2 3 4

Merging

merge :: Ord a => [a] [a] [a]→ →
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys)
 | x < y = x:merge xs (y:ys)
 | otherwise = y:merge (x:xs) ys

Mergesort

Another divide-and-conquer algorithm

To mergesort a list:
● Split the list into two equal parts
● Recursively mergesort the two parts
● Merge the two sorted lists together

Mergesort

1. Split the list into two equal parts

485 3 9 2 7 3 2 1

85 3 9 2 47 3 2 1

Mergesort

2. Recursively mergesort the two parts

85 3 9 2 47 3 2 1

853 92 4 7321

Mergesort

3. Merge the two sorted lists together

792 3 5 8 1 2 3 4

7 92 3 5 81 2 3 4

Mergesort in Haskell

sort [] = []
sort [x] = [x]
sort xs = merge (sort ys) (sort zs)
 where
 (ys, zs) = splitInHalf xs

Split in Haskell

splitInHalf :: [a] ([a], [a])→
splitInHalf xs =
 (take n xs, drop n xs)
 where
 n = length xs `div` 2

(traverses the list three times – once for
take, once for drop, once for length.
Better implementation: exercise!)

Complexity analysis

Mergesort's divide-and-conquer
approach is similar to quicksort

But it always splits the list into equally-
sized pieces!

Hence O(n log n), just like the best case
for quicksort – but this is the worst case
for mergesort

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

log n
“levels”

O(n) time per level

Total time is
O(n log n)!

Mergesort vs quicksort

Mergesort:
● Not in-place
● O(n log n)
● Works on Haskell lists (sequential access)

Quicksort:
● In-place
● O(n log n) but O(n2) if you are not careful
● Works on arrays only (random access)

Can we do better than O(n log n)?

It turns out that O(n log n) is the best
we can do if our sorting algorithm is
based on comparing elements.

But how do we prove a negative (there
is no algorithm better than O(n log n))?

Let's look at a simpler example first.

Can we do better than O(n log n)?

I am thinking of a number between 1 and
3. Can you guess what it is with one
yes/no question?

No, of course not.

Why?

Suppose if I answered yes you would
guess 1, and if I answered no you would
guess 2. You would never guess 3!

There are 3 numbers, but only 2 answers.

Can we do better than O(n log n)?

I am thinking of a number between 1
and 5. Can you guess what it is with two
yes/no questions?

No.

Why?

There are 5 possible numbers, but only
4 possible answers to your two
questions (yes/yes, yes/no, no/yes,
no/no).

Can we do better than O(n log n)?

General principle:

If I am thinking of one of n objects, and
you have to guess which one, there
must be at least n possible outcomes of
your questioning.

If the questions are yes/no, you have to
ask at least log n questions.

Can we do better than O(n log n)?

I have an array of length n, and you have
to guess what order it is in. You may ask
yes/no questions: “is this element less
than that element?”

There are n! permutations of n elements

So you need to perform log (n!)
comparisons.

But how much is log (n!), anyway?

Can we do better than O(n log n)?

log (n!)
= log (n × (n-1) × … × 1)
= log n + log (n-1) × … × log 1
≤ log n + log n + … + log n (n times)
= n log n

So log (n!) ≤ n log n

Can we do better than O(n log n)?

log (n!)
= log (n × (n-1) × … (n/2+1) × … × 1)
= log n + log (n-1) + … + log (n/2+1) + … + log 1
≥ log n + log (n-1) + … + log (n/2+1)
≥ log (n/2) + log (n/2) + … + log (n/2) (n/2) times)
= (n/2) log (n/2)
= (n/2) (log n – log 2)
= (n/2) (log n – 1)

So log (n!) ≤ n log n and log (n!) ≥ (n/2) (log n – 1)
So log (n!) = O (n log n)
So comparison-based sorting must take at least O(n
log n) comparisons!

O(n) sorting algorithms

O(n log n) bound only applies for
comparison-based sorting!

Suppose I want to sort an array of integers,
all between 0 and k-1.

Make an array of k integers, and count how
many times each value appears in the input
array. Then produce the right number of
each value. This is called counting sort.

Only practical if k is small. If it is big, use
bucket sort. (See Wikipedia)

Counting sort

// Assumes all integers are between 0 and k-1
void sort(int[] a, int k) {
 int counts[k];
 // Count how many times each value occurs
 for(int x: a) counts[x]++;
 // Write the results out
 int idx = 0;
 for(int i = 0; i < k; i++) {
 for (int j = 0; j < counts[i]; j++)
 a[idx++] = i;
}

The best sorting algorithm?

The ideal sorting algorithm should be:
● O(n log n) worst case
● O(n) when input is almost sorted
● Simple
● In-place

No sorting algorithm has all four!

Simple algorithms

Bubblesort is just bad

Selection sort: simple but not too fast

Insertion sort: O(n2) worst case, O(n) on
sorted lists
● Because insertion is O(1) best case
● Insertion sort is the fastest algorithm of all on

small arrays and almost-sorted arrays!

Fancier algorithms

Quicksort – normally O(n log n), but
always danger of O(n2). Very fast
normally.

Introsort – quicksort, but switch to
heapsort if the recursion depth gets too
big (used in some C++ compilers)

Heapsort (later in the course) – always
O(n log n)

Mergesort

Always O(n log n), but not in-place

“Smooth mergesort”: split list into
already-sorted runs, merge those. Gives
O(n) on sorted lists (used in GHC)

Timsort: super-optimised smooth
mergesort, used in Python and Java

O(n) sorting algorithms

Special cases: counting sort, bucket
sort, radix sort, ...

Complexity of recursive algorithms

Calculating complexity

Let T(n) be the time mergesort takes on
a list of size n

Then write down a recurrence relation:

T(n) = O(n) + 2T(n/2)

Time to sort a
list of size n

Linear amount
of time spent in

splitting +
merging

Plus two
recursive calls

of size n/2

Calculating complexity

Procedure for calculating complexity
of a recursive algorithm:
● Write down a recurrence relation
● Solve the recurrence relation to get a formula

for T(n) (difficult!)

We will see solutions for a few
recurrence relations only

Calculating complexity

T(n) = O(1) + T(n-1): T(n) = O(n)

T(n) = O(n) + T(n-1): T(n) = O(n2)

T(n) = O(1) + T(n/2): T(n) = O(log n)

T(n) = O(n) + T(n/2): T(n) = O(n)

How do we calculate these?

Expanding out recurrence relations

T(n) = 1 + T(n-1):

T(n) = 1 + T(n-1)

= 2 + T(n-2)

= 3 + T(n-3)

= …

= n + T(n-n)

= n + T(0)

= O(n)

Expanding out recurrence relations

T(n) = n + T(n-1):

T(n) = n + T(n-1)

= n + (n-1) + T(n-2)

= n + (n-1) + (n-2) + T(n-3)

= …

= n + (n-1) + (n-2) + … + 1

= n(n+1) / 2

= O(n2)

Expanding out recurrence relations

T(n) = 1 + T(n/2):

T(n) = 1 + T(n/2)

= 2 + T(n/4)

= 3 + T(n/8)

= …

= log n + T(n/n)

= log n + T(1)

= O(log n)

Expanding out recurrence relations

T(n) = n + T(n/2):

T(n) = n + T(n/2)

= n + n/2 + T(n/4)

= n + n/2 + n/4 + T(n/8)

= …

= n + n/2 + n/4 + …

< 2n

= O(n)

More rules of thumb

Rule of thumb for functions that
recurse once:
● Count how deep the recursion can get, then

multiply by the work done per level

T(n) = f(n) + T(n-1): T(n) = O(n × f(n))

T(n) = f(n) + T(n/2): T(n) = O(f(n) log
n)

This occasionally gives overestimates!

Divide-and-conquer algorithms

T(n) = O(n) + 2T(n/2): T(n) = O(n log n)
● This is mergesort! There is a nice proof in the

book (theorem 7.4).

T(n) = 2T(n-1): T(n) = O(2n)
● Because 2n recursive calls of depth n

Other cases: master theorem (Wikipedia)
or theorem 7.5 from book
● Kind of fiddly – best to just look it up if you need

it

Complexity of recursive functions

Basic idea – recurrence relations

Easy enough to write down, hard to solve
● One technique: expand out the recurrence and see what

happens
● Multiply work per level with number of levels
● Drawing a diagram (like for quicksort) can help!

Master theorem for divide and conquer

A few special cases work for most algorithms –
remember those

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

