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Sorting

5 3 9 2 8 7 3 2 1 4

1 2 2 3 3 4 5 7 8 9

Very many different sorting algorithms
(bubblesort, insertion sort, selection 
sort, quicksort, heapsort, mergesort, 
shell sort, counting sort, radix sort, ...)



  

Application of sorting

Are two words anagrams of each other?

Sort both words, check if they come out 
the same!

m e t e o r

e e m o r t

r e m o t e

e e m o r t



  

Bubblesort

Check for adjacent elements that are in 
the wrong order, and swap them

Starting from one end of the array and 
working towards the other



  

Bubblesort

5 3 9 2 8

3 5 9 2 8

Compare a[0] and a[1]:



  

Bubblesort

3 5 9 2 8

3 5 9 2 8

Compare a[1] and a[2]:



  

Bubblesort

3 5 9 2 8

3 5 2 9 8

Compare a[2] and a[3]:



  

Bubblesort

3 5 2 9 8

3 5 2 8 9

Compare a[3] and a[4]:



  

Bubblesort

3 5 2 8 9

3 5 2 8 9

Back to the beginning!



  

Bubblesort

3 5 2 8 9

3 2 5 8 9

Compare a[1] and a[2]:



  

Bubblesort

3 2 5 8 9

3 2 5 8 9

Compare a[2] and a[3]:



  

Bubblesort

3 2 5 8 9

3 2 5 8 9

Compare a[3] and a[4]:



  

Bubblesort

3 2 5 8 9

2 3 5 8 9

Back to the beginning!



  

Bubblesort

What order to do the swaps in?
● Start at the beginning of the array, loop 

upwards until you reach the top
● Then go round again

How do we know when to stop?
● When the array is sorted
● When the last loop didn't swap any elements



  

Bubblesort

void sort(int[] array) {
  boolean swapped;
  do {
    swapped = false;
    for (int i = 0; i < array.length-1; i++)
      if (a[i] > a[i+1]) {
        // Swap a[i] and a[i+1]
        int x = a[i];
        a[i] = a[i+1];
        a[i] = x;
        swapped = true;
      }
  } while(swapped);
}

This for-loop is O(n)

But how many
times does the

do-loop execute?



  

Performance of bubblesort

After one loop, the biggest element in 
the array has “bubbled up” to the top 
(hence the name bubblesort)
● Look at what happens to 9 in our example

So the do-loop executes n times

Total complexity O(n2)

(we assume that comparisons and 
swaps take O(1) time)



  

Bubble sort is bad!

What if the array is in reverse order?

After one loop, only the 9 is in the right 
place:

It is very inefficient.

9 8 5 3 2

8 5 3 2 9



  

Insertion sort

Imagine someone deals you cards. You 
pick up each one in turn and put it into 
the right place in your hand:

This is the idea of insertion sort.



  

Insertion sort

Sorting                                               :

Start by “picking up” the 5:

5 3 9 2 8

5



  

Insertion sort

Sorting                                               :

Then insert the 3 into the right place:

5 3 9 2 8

3 5



  

Insertion sort

Sorting                                               :

Then the 9:

5 3 9 2 8

3 5 9



  

Insertion sort

Sorting                                               :

Then the 2:

5 3 9 2 8

2 3 5 9



  

Insertion sort

Sorting                                               :

Finally the 8:

5 3 9 2 8

2 3 5 8 9



  

Complexity of insertion sort

Insertion sort does n insertions for an 
array of size n

Does this mean it is O(n)? No! An 
insertion is not constant time.

To insert into a sorted array, you must 
move all the elements up one, which is 
O(n).

Thus total is O(n2).



  

Insertion sort in Haskell

insert x [] = [x]
insert x (y:ys)
  | x < y = x:y:ys
  | otherwise = y:insert x ys

sort [] = []
sort (x:xs) = insert x (sort xs)



  

In-place insertion sort

A sorting algorithm is in-place if it does 
not need to create any temporary arrays

Let's make an in-place insertion sort!

Basic idea: loop through the array, and 
insert each element into the part which 
is already sorted



  

In-place insertion sort

The first element of the array is sorted:

5 3 9 2 8

5 3 9 2 8

White bit: sorted



  

In-place insertion sort

Insert the 3 into the correct place:

5 3 9 2 8

3 5 9 2 8



  

In-place insertion sort

Insert the 9 into the correct place:

3 5 9 2 8

3 5 9 2 8



  

In-place insertion sort

Insert the 2 into the correct place:

3 5 9 2 8

2 3 5 9 8



  

In-place insertion sort

Insert the 8 into the correct place:

2 3 5 9 8

2 3 5 8 9



  

In-place insertion

To insert an item, make space by 
moving everything greater than it 
upwards

2 3 5 9 4

2 3 5 9



  

In-place insertion

2 3 5 9 4

2 3 5 9

2 3 5 9



  

In-place insertion

// Assuming that a[0..n) is sorted,
// inserting a[n] into the right place
// so that a[0..n] is sorted
void insert(int[] a, int n) {
  int x = a[n];
  int i = n;
  while(i > 0 && a[i-1] > x) {
    a[i] = a[i-1];
    i--;
  }
  a[i] = x;
}

This notation
means

0, 1, …, n-1



  

In-place insertion sort

void sort(int[] array) {
   for (int i = 1; i < n; i++)
      insert(array, i);
}

An aside: we have the invariant that array[0..i) is 
sorted
● An invariant is something that holds whenever the loop starts
● Initially, i = 1 and array[0..1) is sorted
● When array[0..i) is sorted, the loop body makes 
array[0..i+1) sorted, establishing the invariant for the next 
iteration

● When the loop finishes, i = n,  so array[0..n) is sorted – the 
whole array!



  

A negative result

Bubblesort and insertion sort are both 
based on swapping adjacent elements

No sorting algorithm that works like 
this can be better than O(n2)!

See section 8.3 for details.



  

Selection sort

Find the smallest element of the array, 
and delete it

Find the smallest remaining element, 
and delete it

And so on

Finding the smallest element is O(n), so 
total complexity is O(n2)



  

Selection sort

Sorting                                               :

The smallest element is 2:

We also delete 2 from the input array.

5 3 9 2 8

2



  

Selection sort

Sorting                                      :

Now the smallest element is 3:

We delete 3 from the input array.

5 3 9 8

2 3



  

Selection sort

Sorting                              :

Now the smallest element is 5:

We delete 5 from the input array.

(...and so on)

5 9 8

2 3 5



  

In-place selection sort

Instead of deleting the smallest 
element, swap it with the first element!

The next time round, ignore the first 
element of the array: we know it's the 
smallest one.

Instead, find the smallest element of the 
rest of the array, and swap it with the 
second element.



  

In-place selection sort

Sorting                                               :

The smallest element is 2:

5 3 9 2 8

2 3 9 5 8



  

In-place selection sort

The smallest element in the rest of the 
array is 3:

2 3 9 5 8

2 3 9 5 8



  

In-place selection sort

The smallest element in the rest of the 
array is 5:

2 3 9 5 8

2 3 5 9 8



  

In-place selection sort

The smallest element in the rest of the 
array is 8:

2 3 5 9 8

2 3 5 8 9



  

int sort(int[] a) {
  for (int i = 0; i < a.length - 1; i++) {
    int min =
      /* the smallest element in a[i..n) */;
    int x = a[min];
    a[min] = a[i];
    a[i] = x;
  }
}

In-place selection sort



  

Divide and conquer algorithms
and quicksort



  

Divide and conquer

Very general name for a type of 
recursive algorithm

You have a problem to solve.
● Split that problem into smaller subproblems
● Recursively solve those subproblems
● Combine the solutions for the subproblems to 

solve the whole problem



  

To solve this...



  

1. Split the problem
into subproblems

2. Recursively solve
the subproblems

3. Combine
the solutions



  

Quicksort

Pick an element from the array, called 
the pivot

Partition the array:
● First come all the elements smaller than the 

pivot, then the pivot, then all the elements 
greater than the pivot

Recursively quicksort the two partitions



  

Quicksort

5 3 9 2 8 7 3 2 1 4

Say the pivot is 5.

Partition the array into: all elements 
less than 5, then 5, then all elements 
greater than 5

3 3 2 2 1 4 5 9 8 7

Less than the pivot Greater than the pivot



  

Quicksort

Now recursively quicksort the two 
partitions!

3 3 2 2 1 4 5 9 8 7

1 2 2 3 3 4 5 7 8 9

Quicksort Quicksort



  

Pseudocode

// call as sort(a, 0, a.length-1);
void sort(int[] a, int low, int high) {
   if (low >= high) return;
   int pivot = partition(a, low, high);
      // assume that partition returns the
      // index where the pivot now is
   sort(a, low, pivot-1);
   sort(a, pivot+1, high);
}

Usual optimisation: switch to insertion sort when 
the input array is small



  

Haskell code

sort [] = []
sort (x:xs) =
  sort (filter (< x) xs) ++
  [x] ++
  sort (filter (>= x) xs)

Split: filter
Combine: ++



  

Complexity of quicksort

In the best case, partitioning splits an 
array of size n into two halves of size 
n/2:

n

n/2 n/2



  

Complexity of quicksort

The recursive calls will split these arrays 
into four arrays of size n/4:

n

n/2 n/2

n/4 n/4 n/4 n/4



  

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

log n
“levels”

O(n) time per level

Total time is
O(n log n)!



  

Complexity of quicksort

But that's the best case!

In the worst case, everything is greater 
than the pivot (say)
● The recursive call has size n-1
● Which in turn recurses with size n-2, etc.
● Amount of time spent in partitioning:

n + (n-1) + (n-2) + … + 1 = O(n2)



  

Worst cases

Sorted array

Reverse-sorted array

Try these out!



  

Complexity of quicksort

Quicksort works well when the pivot 
splits the array into roughly equal parts
● Median-of-three: pick first, middle and last 

element of the array and pick the median of those 
three

● Pick pivot at random: gives O(n log n) expected 
(probabilistic) complexity

Introsort: detect when we get into the 
O(n2) case and switch to a different 
algorithm (e.g. heapsort)



  

Summary of quicksort

● Divide-and-conquer algorithm: choose 
pivot, partition array into two, 
recursively sort both partitions

● O(n log n) if both partitions have about 
equal size, O(n2) if one is much bigger 
than the other
● One solution: choose pivot at random (others 

in book)

● Very fast in practice



  

Next lecture

How to perform partitioning

More sorting algorithms

Is O(n log n) the limit of sorting?

How to find the complexity of recursive 
programs
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