

Sorting

Weiss chapter 8.1 – 8.3, 8.6

Sorting

5 3 9 2 8 7 3 2 1 4

1 2 2 3 3 4 5 7 8 9

Very many different sorting algorithms
(bubblesort, insertion sort, selection
sort, quicksort, heapsort, mergesort,
shell sort, counting sort, radix sort, ...)

Application of sorting

Are two words anagrams of each other?

Sort both words, check if they come out
the same!

m e t e o r

e e m o r t

r e m o t e

e e m o r t

Bubblesort

Check for adjacent elements that are in
the wrong order, and swap them

Starting from one end of the array and
working towards the other

Bubblesort

5 3 9 2 8

3 5 9 2 8

Compare a[0] and a[1]:

Bubblesort

3 5 9 2 8

3 5 9 2 8

Compare a[1] and a[2]:

Bubblesort

3 5 9 2 8

3 5 2 9 8

Compare a[2] and a[3]:

Bubblesort

3 5 2 9 8

3 5 2 8 9

Compare a[3] and a[4]:

Bubblesort

3 5 2 8 9

3 5 2 8 9

Back to the beginning!

Bubblesort

3 5 2 8 9

3 2 5 8 9

Compare a[1] and a[2]:

Bubblesort

3 2 5 8 9

3 2 5 8 9

Compare a[2] and a[3]:

Bubblesort

3 2 5 8 9

3 2 5 8 9

Compare a[3] and a[4]:

Bubblesort

3 2 5 8 9

2 3 5 8 9

Back to the beginning!

Bubblesort

What order to do the swaps in?
● Start at the beginning of the array, loop

upwards until you reach the top
● Then go round again

How do we know when to stop?
● When the array is sorted
● When the last loop didn't swap any elements

Bubblesort

void sort(int[] array) {
 boolean swapped;
 do {
 swapped = false;
 for (int i = 0; i < array.length-1; i++)
 if (a[i] > a[i+1]) {
 // Swap a[i] and a[i+1]
 int x = a[i];
 a[i] = a[i+1];
 a[i] = x;
 swapped = true;
 }
 } while(swapped);
}

This for-loop is O(n)

But how many
times does the

do-loop execute?

Performance of bubblesort

After one loop, the biggest element in
the array has “bubbled up” to the top
(hence the name bubblesort)
● Look at what happens to 9 in our example

So the do-loop executes n times

Total complexity O(n2)

(we assume that comparisons and
swaps take O(1) time)

Bubble sort is bad!

What if the array is in reverse order?

After one loop, only the 9 is in the right
place:

It is very inefficient.

9 8 5 3 2

8 5 3 2 9

Insertion sort

Imagine someone deals you cards. You
pick up each one in turn and put it into
the right place in your hand:

This is the idea of insertion sort.

Insertion sort

Sorting :

Start by “picking up” the 5:

5 3 9 2 8

5

Insertion sort

Sorting :

Then insert the 3 into the right place:

5 3 9 2 8

3 5

Insertion sort

Sorting :

Then the 9:

5 3 9 2 8

3 5 9

Insertion sort

Sorting :

Then the 2:

5 3 9 2 8

2 3 5 9

Insertion sort

Sorting :

Finally the 8:

5 3 9 2 8

2 3 5 8 9

Complexity of insertion sort

Insertion sort does n insertions for an
array of size n

Does this mean it is O(n)? No! An
insertion is not constant time.

To insert into a sorted array, you must
move all the elements up one, which is
O(n).

Thus total is O(n2).

Insertion sort in Haskell

insert x [] = [x]
insert x (y:ys)
 | x < y = x:y:ys
 | otherwise = y:insert x ys

sort [] = []
sort (x:xs) = insert x (sort xs)

In-place insertion sort

A sorting algorithm is in-place if it does
not need to create any temporary arrays

Let's make an in-place insertion sort!

Basic idea: loop through the array, and
insert each element into the part which
is already sorted

In-place insertion sort

The first element of the array is sorted:

5 3 9 2 8

5 3 9 2 8

White bit: sorted

In-place insertion sort

Insert the 3 into the correct place:

5 3 9 2 8

3 5 9 2 8

In-place insertion sort

Insert the 9 into the correct place:

3 5 9 2 8

3 5 9 2 8

In-place insertion sort

Insert the 2 into the correct place:

3 5 9 2 8

2 3 5 9 8

In-place insertion sort

Insert the 8 into the correct place:

2 3 5 9 8

2 3 5 8 9

In-place insertion

To insert an item, make space by
moving everything greater than it
upwards

2 3 5 9 4

2 3 5 9

In-place insertion

2 3 5 9 4

2 3 5 9

2 3 5 9

In-place insertion

// Assuming that a[0..n) is sorted,
// inserting a[n] into the right place
// so that a[0..n] is sorted
void insert(int[] a, int n) {
 int x = a[n];
 int i = n;
 while(i > 0 && a[i-1] > x) {
 a[i] = a[i-1];
 i--;
 }
 a[i] = x;
}

This notation
means

0, 1, …, n-1

In-place insertion sort

void sort(int[] array) {
 for (int i = 1; i < n; i++)
 insert(array, i);
}

An aside: we have the invariant that array[0..i) is
sorted
● An invariant is something that holds whenever the loop starts
● Initially, i = 1 and array[0..1) is sorted
● When array[0..i) is sorted, the loop body makes
array[0..i+1) sorted, establishing the invariant for the next
iteration

● When the loop finishes, i = n, so array[0..n) is sorted – the
whole array!

A negative result

Bubblesort and insertion sort are both
based on swapping adjacent elements

No sorting algorithm that works like
this can be better than O(n2)!

See section 8.3 for details.

Selection sort

Find the smallest element of the array,
and delete it

Find the smallest remaining element,
and delete it

And so on

Finding the smallest element is O(n), so
total complexity is O(n2)

Selection sort

Sorting :

The smallest element is 2:

We also delete 2 from the input array.

5 3 9 2 8

2

Selection sort

Sorting :

Now the smallest element is 3:

We delete 3 from the input array.

5 3 9 8

2 3

Selection sort

Sorting :

Now the smallest element is 5:

We delete 5 from the input array.

(...and so on)

5 9 8

2 3 5

In-place selection sort

Instead of deleting the smallest
element, swap it with the first element!

The next time round, ignore the first
element of the array: we know it's the
smallest one.

Instead, find the smallest element of the
rest of the array, and swap it with the
second element.

In-place selection sort

Sorting :

The smallest element is 2:

5 3 9 2 8

2 3 9 5 8

In-place selection sort

The smallest element in the rest of the
array is 3:

2 3 9 5 8

2 3 9 5 8

In-place selection sort

The smallest element in the rest of the
array is 5:

2 3 9 5 8

2 3 5 9 8

In-place selection sort

The smallest element in the rest of the
array is 8:

2 3 5 9 8

2 3 5 8 9

int sort(int[] a) {
 for (int i = 0; i < a.length - 1; i++) {
 int min =
 /* the smallest element in a[i..n) */;
 int x = a[min];
 a[min] = a[i];
 a[i] = x;
 }
}

In-place selection sort

Divide and conquer algorithms
and quicksort

Divide and conquer

Very general name for a type of
recursive algorithm

You have a problem to solve.
● Split that problem into smaller subproblems
● Recursively solve those subproblems
● Combine the solutions for the subproblems to

solve the whole problem

To solve this...

1. Split the problem
into subproblems

2. Recursively solve
the subproblems

3. Combine
the solutions

Quicksort

Pick an element from the array, called
the pivot

Partition the array:
● First come all the elements smaller than the

pivot, then the pivot, then all the elements
greater than the pivot

Recursively quicksort the two partitions

Quicksort

5 3 9 2 8 7 3 2 1 4

Say the pivot is 5.

Partition the array into: all elements
less than 5, then 5, then all elements
greater than 5

3 3 2 2 1 4 5 9 8 7

Less than the pivot Greater than the pivot

Quicksort

Now recursively quicksort the two
partitions!

3 3 2 2 1 4 5 9 8 7

1 2 2 3 3 4 5 7 8 9

Quicksort Quicksort

Pseudocode

// call as sort(a, 0, a.length-1);
void sort(int[] a, int low, int high) {
 if (low >= high) return;
 int pivot = partition(a, low, high);
 // assume that partition returns the
 // index where the pivot now is
 sort(a, low, pivot-1);
 sort(a, pivot+1, high);
}

Usual optimisation: switch to insertion sort when
the input array is small

Haskell code

sort [] = []
sort (x:xs) =
 sort (filter (< x) xs) ++
 [x] ++
 sort (filter (>= x) xs)

Split: filter
Combine: ++

Complexity of quicksort

In the best case, partitioning splits an
array of size n into two halves of size
n/2:

n

n/2 n/2

Complexity of quicksort

The recursive calls will split these arrays
into four arrays of size n/4:

n

n/2 n/2

n/4 n/4 n/4 n/4

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

log n
“levels”

O(n) time per level

Total time is
O(n log n)!

Complexity of quicksort

But that's the best case!

In the worst case, everything is greater
than the pivot (say)
● The recursive call has size n-1
● Which in turn recurses with size n-2, etc.
● Amount of time spent in partitioning:

n + (n-1) + (n-2) + … + 1 = O(n2)

Worst cases

Sorted array

Reverse-sorted array

Try these out!

Complexity of quicksort

Quicksort works well when the pivot
splits the array into roughly equal parts
● Median-of-three: pick first, middle and last

element of the array and pick the median of those
three

● Pick pivot at random: gives O(n log n) expected
(probabilistic) complexity

Introsort: detect when we get into the
O(n2) case and switch to a different
algorithm (e.g. heapsort)

Summary of quicksort

● Divide-and-conquer algorithm: choose
pivot, partition array into two,
recursively sort both partitions

● O(n log n) if both partitions have about
equal size, O(n2) if one is much bigger
than the other
● One solution: choose pivot at random (others

in book)

● Very fast in practice

Next lecture

How to perform partitioning

More sorting algorithms

Is O(n log n) the limit of sorting?

How to find the complexity of recursive
programs

	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

