Sorting

Weiss chapter 8.1 – 8.3, 8.6

Very many different sorting algorithms (bubblesort, insertion sort, selection sort, quicksort, heapsort, mergesort, shell sort, counting sort, radix sort, ...)

Application of sorting

Are two words anagrams of each other? Sort both words, check if they come out the same!

Check for *adjacent elements* that are in the wrong order, and swap them Starting from one end of the array and working towards the other

Compare a[0] and a[1]:

Compare a[1] and a[2]:

Compare a[2] and a[3]:

Compare a[3] and a[4]:

Back to the beginning!

Compare a[1] and a[2]:

Compare a[2] and a[3]:

Compare a[3] and a[4]:

Back to the beginning!

What order to do the swaps in?

- Start at the beginning of the array, loop upwards until you reach the top
- Then go round again
- How do we know when to stop?
 - When the array is sorted
 - When the last loop didn't swap any elements

```
Bubblesort
                                This for-loop is O(n)
void sort(int[] array) {
  boolean swapped;
  do {
    swapped = false;
    for (int i = 0; i < array.length-1; i++)
      if (a[i] > a[i+1]) {
        // Swap a[i] and a[i+1]
        int x = a[i];
        a[i] = a[i+1];
                                 But how many
        a[i] = x;
        swapped = true;
                                  times does the
      }
                                do-loop execute?
  } while(swapped);
}
```

Performance of bubblesort

After one loop, the biggest element in the array has "bubbled up" to the top (hence the name bubblesort)

Look at what happens to 9 in our example
So the do-loop executes n times
Total complexity O(n²)
(we assume that comparisons and swaps take O(1) time)

Bubble sort is *bad*!

What if the array is in reverse order?

After one loop, only the 9 is in the right place: 8 5 3 2 9

It is very inefficient.

Insertion sort

Imagine someone deals you cards. You pick up each one in turn and put it into the right place in your hand:

This is the idea of *insertion sort*.

Start by "picking up" the 5:

5

Then insert the 3 into the right place:

Then the 9:

Then the 2:

2	3	5	9

Insertion sortSorting53928:

Finally the 8:

|--|

Complexity of insertion sort

- Insertion sort does n insertions for an array of size n
- Does this mean it is O(n)? *No!* An insertion is not constant time.
- To insert into a sorted array, you must move all the elements up one, which is O(n).
- Thus total is $O(n^2)$.

Insertion sort in Haskell

sort [] = []
sort (x:xs) = insert x (sort xs)

A sorting algorithm is *in-place* if it does not need to create any temporary arrays Let's make an in-place insertion sort! Basic idea: loop through the array, and insert each element into the part which is already sorted

The first element of the array is sorted:

Insert the 3 into the correct place:

Insert the 9 into the correct place:

Insert the 2 into the correct place:

2 3 5 9 8)
-----------	---

Insert the 8 into the correct place:

2 3 5 8 9

In-place insertion

To insert an item, make space by moving everything greater than it upwards

In-place insertion

This notation means 0, 1, ..., n-1

```
// Assuming that a[0..n) is sorted,
// inserting a[n] into the right place
// so that a[0..n] is sorted
void insert(int[] a, int n) {
  int x = a[n];
  int i = n;
  while(i > 0 && a[i-1] > x) {
    a[i] = a[i-1];
    1--;
  }
  a[i] = x;
```

```
void sort(int[] array) {
   for (int i = 1; i < n; i++)
      insert(array, i);
}</pre>
```

An aside: we have the *invariant* that array[0..i) is sorted

- An invariant is something that holds whenever the loop starts
- Initially, i = 1 and array[0..1) is sorted
- When array[0..i) is sorted, the loop body makes array[0..i+1) sorted, establishing the invariant for the next iteration
- When the loop finishes, i = n, so array[0..n) is sorted the whole array!

A negative result

Bubblesort and insertion sort are both based on *swapping adjacent elements* No sorting algorithm that works like this can be better than $O(n^2)$! See section 8.3 for details.

Selection sort

- Find the smallest element of the array, and delete it
- Find the smallest remaining element, and delete it
- And so on

Finding the smallest element is O(n), so total complexity is $O(n^2)$

The smallest element is 2:

2

We also delete 2 from the input array.

Now the smallest element is 3:

2 3

We delete 3 from the input array.

Selection sort

Now the smallest element is 5:

We delete 5 from the input array. (...and so on)

Instead of deleting the smallest element, *swap it* with the first element!

The next time round, ignore the first element of the array: we know it's the smallest one.

Instead, find the smallest element of the *rest* of the array, and swap it with the second element.

The smallest element is 2:

The smallest element in the rest of the array is 3:

The smallest element in the rest of the array is 5:

The smallest element in the rest of the array is 8:

Divide and conquer algorithms and quicksort

Divide and conquer

Very general name for a type of recursive algorithm

You have a problem to solve.

- *Split* that problem into smaller subproblems
- *Recursively* solve those subproblems
- *Combine* the solutions for the subproblems to solve the whole problem

To solve this...

1. *Split* the problem into subproblems

2. *Recursively* solve the subproblems

3. *Combine* the solutions

Quicksort

Pick an element from the array, called the *pivot*

Partition the array:

• First come all the elements smaller than the pivot, then the pivot, then all the elements greater than the pivot

Recursively quicksort the two partitions

Quicksort

Say the pivot is 5.

Partition the array into: all elements less than 5, then 5, then all elements greater than 5

Quicksort

Now recursively quicksort the two partitions!

3	3	2	2	1	4	5	9	8	7
Quicksort Quicksort									
1	2	2	3	3	4	5	7	8	9

Pseudocode

```
// call as sort(a, 0, a.length-1);
void sort(int[] a, int low, int high) {
    if (low >= high) return;
    int pivot = partition(a, low, high);
        // assume that partition returns the
        // index where the pivot now is
        sort(a, low, pivot-1);
        sort(a, pivot+1, high);
}
```

Usual optimisation: switch to insertion sort when the input array is small

Haskell code

sort [] = [] sort (x:xs) = sort (filter (< x) xs) ++</pre> $\begin{bmatrix} X \end{bmatrix} ++$ sort (filter (>= x) xs) *Split*: filter *Combine*: ++

Complexity of quicksort

In the best case, partitioning splits an array of size n into two halves of size n/2:

Complexity of quicksort

The recursive calls will split these arrays into four arrays of size n/4:

O(n) time per level

Complexity of quicksort

But that's the best case!

In the worst case, everything is greater than the pivot (say)

- The recursive call has size n-1
- Which in turn recurses with size n-2, etc.
- Amount of time spent in partitioning: $n + (n-1) + (n-2) + ... + 1 = O(n^2)$

Worst cases

Sorted array Reverse-sorted array Try these out!

Complexity of quicksort

Quicksort works well when the pivot splits the array into roughly equal parts

- Median-of-three: pick first, middle and last element of the array and pick the median of those three
- Pick pivot at random: gives O(n log n) *expected* (probabilistic) complexity

Introsort: detect when we get into the $O(n^2)$ case and switch to a different algorithm (e.g. heapsort)

Summary of quicksort

- Divide-and-conquer algorithm: choose pivot, partition array into two, recursively sort both partitions
- O(n log n) if both partitions have about equal size, O(n²) if one is much bigger than the other
 - One solution: choose pivot at random (others in book)
- Very fast in practice

Next lecture

How to perform partitioning More sorting algorithms Is O(n log n) the limit of sorting? How to find the complexity of recursive programs