
  

Performance of dynamic arrays - 
simpler

Suppose the array has capacity 2n

It must have been expanded n times: 1 
→ 2 → 4 → … → 2n-1 → 2n

The total number of copied elements is 
1 + 2 + 4 + … + 2n-1 = 2n – 1

If the array has size m, its capacity is at 
most 2m, so the number of copied 
elements is at most 2m-1



  

Binary search

Complexity

Weiss chapter 5



  

Searching

Suppose I give you an array, and ask 
you to find a particular value in it, say 4.

5 3 9 2 8 7 3 2 1 4

The only way is to look at each element 
in turn.

This is called linear search.



  

Performance of linear search

If we are unlucky, the item we are 
looking for will be the last one in the 
array

So, if the array has size n, we might 
need to look at n elements



  

Searching

But what if the array is sorted?

1 2 2 3 3 4 5 7 8 9

There is a better way, called binary 
search.



  

Binary search

Suppose we want to look for 4.

We start by looking at the element half 
way along the array, which happens to 
be 3.

1 2 2 3 3 4 5 7 8 9



  

Binary search

3 is less than 4.

Since the array is sorted, we know that 4 
must come after 3.

We can ignore everything before 3.

1 2 2 3 3 4 5 7 8 9



  

Binary search

Now we repeat the process.

We look at the element half way along 
what's left of the array. This happens to 
be 7.

1 2 2 3 3 4 5 7 8 9



  

Binary search

7 is greater than 4.

Since the array is sorted, we know that 4 
must come before 7.

We can ignore everything after 7.

1 2 2 3 3 4 5 7 8 9



  

Binary search

We repeat the process.

We look half way along the array again.

We find 4!

1 2 2 3 3 4 5 7 8 9



  

Implementing binary search

Keep two variables low and high, 
representing the part of the array to 
search

Let mid = (low + high) / 2 and look 
at a[mid]

Depending on the answer, cut off parts 
of the array by adjusting low and high



  

Binary search

Looking for 4 again:

mid = (low + high)/2

1 2 2 3 3 4 5 7 8 9

low mid high



  

Binary search

Cut off everything below mid:

low = mid + 1

1 2 2 3 3 4 5 7 8 9

low high



  

Binary search

mid = (low + high)/2

1 2 2 3 3 4 5 7 8 9

low highmid



  

Binary search

Cut off everything above mid:

high = mid - 1

1 2 2 3 3 4 5 7 8 9

low high



  

Binary search

Found it!

mid = (low + high)/2

1 2 2 3 3 4 5 7 8 9

highmid



  

public static <E extends Comparable<? super E>>
E binarySearch(E[] a, E x)
{
int low = 0;
int high = a.length  1;–
int mid;
while (low <= high) {
  mid = (low + high)/2;
  if (a[mid].compareTo(x) < 0)
    low = mid + 1;
  else if (a[mid].compareTo(x) > 0)
    high = mid  1;–
  else
    return a[mid];
}
return null;

}

Weiss
section 4.7



  

Performance of binary search

Every time we look at an element, we 
cut high - low in half

With an array of size 2n, after n 
searches, we are down to 1 element

On an array of size n, need to look at 
log2 n elements!



  

Performance – a graph



  

Zoom in!



  

Binary search needs to look at only 
20 elements for an array of size one 

million!
30 for an array of size one billion!



  

Arrays.binarySearch

You can find this in 
java.util.Arrays:

int binarySearch
  (Object[] a, Object key)

● Returns an index, not a value, and 
returns a negative number if not found



  

Complexity
(reasoning about performance)



  



  

Big idea:
Let's ignore constant factors!



  

When n is 1000000...

● log2 n is 20

● n is 1000000
● n2 is 1000000000000
● 2n is a number with 300,000 digits...

An algorithm that takes 1000n steps 
trounces one that takes n2 steps



  

A corollary:
the speed of the computer

doesn't matter
(count number of steps

instead of amount of time)



  

How many steps?

Object search(Object[] a, Object x) {

  for(int i = 0; i < a.length; i++) {

    if (a[i].equals(target))

      return a[i];

  }

  return null;

}

Assume that
loop body takes

1 step



  

Linear search is O(n):
amount of time taken is proportional

to n,
where n is a.length

(“linear complexity”)



  

Big-O complexity

“The time taken is proportional to...”
● O(n): time is proportional to input size
● O(n2): time is proportional to square of input 

size
● O(log n): time is proportional to log of input 

size (“logarithmic complexity”)
● O(1): takes constant time

Complexity is also called growth rate



  

Can measure things other than time 
too

Dynamic arrays: consumes O(n) space 
for n adds

Binary search: does O(log n) 
comparisons for an array of size n



  

How many steps?

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < a.length; j++)

      if (a[i].equals(a[j]) && i != j)

        return false;

  return true;

}
Assume that

loop body
takes 1 step



  

O(n2), where n = a.length
(“quadratic complexity”)

(outer loop runs n times,
inner loop runs n times for each run 

of the outer loop, giving n × n)



  

How many steps?

boolean disjoint(Object[] a, Object[] b) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < b.length; j++)

      if (a[i].equals(b[j]))

        return false;

  return true;

}



  

O(mn), where
m = a.length
n = b.length



  

Big O, formally

T(n) is O(f(n)) if for sufficiently large n, 
T(n) is at most proportional to f(n)
● there are two constants n0 and c

● such that whenever n ≥ n0, T(n) ≤ c × f(n)

“For sufficiently large n, T(n) ≤ c × f(n)”

T(n) is typically “the time that 
algorithm X takes on an input of size n”



  

An example: n2 + 2n + 3 is O(n2)

n2+2n+3 ≤ 2n2

for n ≥ 3

n
0
 = 3

c = 2



  

Multiplying Big O

O(f(n)) × O(g(n)) = O(f(n) × g(n))

k × O(f(n)) = O(f(n)), if k is constant

(Exercise: show that these are true)
● You can drop constant factors when 

calculating Big O

e.g. 2 × O(n) = O(2n) = O(n)

e.g. O(n2) × O(n3) = O(n5)



  



  

Growth rates
Imagine that we double the input size from 
n to 2n.

If an algorithm is...
● O(1), then it takes the same time as before
● O(log n), then it takes a constant amount more
● O(n), then it takes twice as long
● O(n log n), then it takes twice as long plus a little bit 

more
● O(n2), then it takes four times as long

If an algorithm is O(2n), then adding one 
element makes it take twice as long



  



  

A hierarchy

O(1) < O(log n) < O(n) < O(n log n) < O(n2) 
< O(n3) < O(2n)

When adding a term lower in the hierarchy 
to one higher in the hierarchy, the lower-
complexity term disappears:

O(1) + O(log n) = O(log n)

O(log n) + O(nk) = O(nk) (if k ≥ 0)

O(nj) + O(nk) = O(nk), if j ≤ k

O(nk) + O(2n) = O(2n)



  

Hierarchy examples

O(n) + O(2n) = 2n

O(n3) + O(n2 log n)
= O(n2) × O(n + log n)
= O(n2) × O(n)
= O(n3)

The second one uses the multiplication 
rule O(f(n)) × O(g(n)) = O(f(n) × g(n)) 
with f(n) = n2, g(n) = n + log n



  

Quiz

What are these in Big O notation?
● n2 + 11
● 2n3 + 3n – 1
● n4 + 2n

● (n2 + 3)(2n × n) + log10 n

Big O notation is very succinct!



  

Just use hierarchy and multiplication 
rules!

n2 + 11 = O(n2) + O(1) = O(n2)

2n3 + 3n – 1 = O(n3) + O(n) + O(1) = 
O(n3)

n4 + 2n = O(n4) + O(2n) = O(2n)

(n2 + 3)(2n × n) + log10 n =
O(n2) × O(2n × n) + O(log n) =
O(2n × n3) + O(log n) = O(2n × n3)



  

The complexity of a loop

The running time of a loop
is the number of times it runs
times the running time of the body

Or:
If a loop runs m times
and the body takes O(f(n)) time
then the loop takes O(m × f(n))



  

What's the complexity?

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < a.length; j++)

      if (a[i].equals(a[j]) && i != j)

        return false;

  return true;

}



  

What's the complexity?

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < a.length; j++)

      if (a[i].equals(a[j]) && i != j)

        return false;

  return true;

}
Body is O(1)



  

What's the complexity?

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < a.length; j++)

      if (a[i].equals(a[j]) && i != j)

        return false;

  return true;

}
Body is O(1)

Inner loop is
O(n)



  

What's the complexity?

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < a.length; j++)

      if (a[i].equals(a[j]) && i != j)

        return false;

  return true;

}
Body is O(1)

Inner loop is
O(n)

Outer loop is
O(n2)



  

What's the complexity?

void something(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 1; j < a.length; j *= 2)

      … // something taking O(1) time

}



  

What's the complexity?

void something(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 1; j < a.length; j *= 2)

      … // something taking O(1) time

}

Inner loop is
O(log n)



  

What's the complexity?

void something(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 1; j < a.length; j *= 2)

      … // something taking O(1) time

}

Inner loop is
O(log n)

Outer loop is
O(n log n)
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What's the complexity?

long squareRoot(long n) {

    long i = 0;

    long j = n+1;

    while (i + 1 != j) {

        long k = (i + j) / 2;

        if (k*k <= n) i = k; 

        else j = k; 

    }

    return i;

}
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What's the complexity?

long squareRoot(long n) {

    long i = 0;

    long j = n+1;

    while (i + 1 != j) {

        long k = (i + j) / 2;

        if (k*k <= n) i = k; 

        else j = k; 

    }

    return i;

}

Each iteration
takes O(1) time
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What's the complexity?

long squareRoot(long n) {

    long i = 0;

    long j = n+1;

    while (i + 1 != j) {

        long k = (i + j) / 2;

        if (k*k <= n) i = k; 

        else j = k; 

    }

    return i;

}

Each iteration
takes O(1) time

...and halves
j-i, so O(log n)



  

A downside to Big O

Big O gives an upper bound of runtime! 
Note the “≤” in the formal definition.

Binary search is O(log n), but it is also 
O(n), O(n2), O(2n), …

When calculating big O, you may 
occasionally get too big answers – then 
you just have to do the maths by hand 
(exercise 5.21 in Weiss)



  

What's the complexity?

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j <= i; j++)

      if (a[i].equals(a[j]))

        return false;

  return true;

}



  

What's the complexity?

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j <= i; j++)

      if (a[i].equals(a[j]))

        return false;

  return true;

}

i ≤ n, so this loop runs
O(n) times,

so O(n2) in total?



  

The good news

In this kind of loop...

for(int i = 0; i < n; i++)

  for (int j = 0; j <= i; j++)

...you can say that the inner loop runs O(n) 
times, without messing up the answer. The 
complexity is the same as if we had j <= n as 
the loop condition!



  

Analysis of unique

Outermost loop runs n times

Innermost loop runs i times

Innermost loop takes c×i steps (O(i))

So O(n2) was correct!

∑
i=0

n−1

c×i=c(∑
i=0

n−1

i)=c(
n(n−1)

2
)=O(n2)



  

Running statements in sequence

What's the complexity of this program?
  for (int i = 0; i < n; i++) …
  for (int i = 1; i < n; i *= 2) …



  

Running statements in sequence

What's the complexity of this program?
  for (int i = 0; i < n; i++) …
  for (int i = 1; i < n; i *= 2) …

The first line is O(n), the second is O(log 
n)

So total is O(n + log n) = O(n)

For statements in sequence, add their 
complexities!



  

A bigger example

for (int i = 1; i <= n; i *= 2) {
   for (int j = 0; j < n*n; j++)
      for (int k = 0; k <= j; k++)
         …
   for (int j = 0; j < n; j++)
      …
}



  

A bigger example

for (int i = 1; i <= n; i *= 2) {
   for (int j = 0; j < n*n; j++)
      for (int k = 0; k <= j; k++)
         …
   for (int j = 0; j < n; j++)
      …
} This loop is

O(n)



  

A bigger example

for (int i = 1; i <= n; i *= 2) {
   for (int j = 0; j < n*n; j++)
      for (int k = 0; k <= j; k++)
         …
   for (int j = 0; j < n; j++)
      …
} This loop is

O(n)

The j-loop
runs n2 times



  

A bigger example

for (int i = 1; i <= n; i *= 2) {
   for (int j = 0; j < n*n; j++)
      for (int k = 0; k <= j; k++)
         …
   for (int j = 0; j < n; j++)
      …
}

k <= j < n*n
so this loop is

O(n2)
This loop is

O(n)

The j-loop
runs n2 times



  

A bigger example

for (int i = 1; i <= n; i *= 2) {
   for (int j = 0; j < n*n; j++)
      for (int k = 0; k <= j; k++)
         …
   for (int j = 0; j < n; j++)
      …
}

k <= j < n*n
so this loop is

O(n2)

The outer loop
runs O(log n)

times

This loop is
O(n)

The j-loop
runs n2 times



  

A bigger example

for (int i = 1; i <= n; i *= 2) {
   for (int j = 0; j < n*n; j++)
      for (int k = 0; k <= j; k++)
         …
   for (int j = 0; j < n; j++)
      …
}

Total: O(log n) × (O(n2) × O(n2) + O(n))
= O(n4 log n)

k <= j < n*n
so this loop is

O(n2)

The outer loop
runs O(log n)

times

This loop is
O(n)

The j-loop
runs n2 times



  

Summary

Binary search – an O(log n) algorithm

Big O complexity and why we use it

Rules for manipulating big O

Finding complexity of an algorithm

See you after Easter!

P.S. Try to read Weiss chapter 5!


	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 52
	Slide 55
	Slide 58
	Slide 59
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 71

