

Summing up
[none of this will be on the exam :)]

Lab deadlines

You can submit lab 3 until Friday (even if
it's a first submission)

If you've missed the final deadline for a
lab, don't panic!
● On June the 3rd I will sit in my office all afternoon

and you can show me your lab in person
● Let me know in advance so that I can reopen Fire

for you

A catalogue of data structures

Basic data structures

Arrays: good for random access
● dynamic arrays: resizeable

Linked lists: good for sequential access
● many variants – doubly linked, etc.

Trees: good for hierarchical data
● special case: binary trees

Graphs: good for cyclic data
● many variants: weighted, directed, etc.

Some data structures are special

In machine language, the memory is an array of
integers
● To the processor, everything is an array

In imperative languages, the memory is an object
graph with references being edges
● To the imperative language, everything is a graph (or an array)

In functional languages, every algebraic data type is a
kind of tree (cf. Lisp S-expressions)
● To the functional language, everything is a tree (or a function)

Everything is built from arrays, object graphs and
algebraic data types

Basic ADTs

Maps: maintain a key/value relationship
● An array is a sort of map where the keys are array indices

Sets: like a map but with only keys, no values

Queue: add to one end, remove from the other

Stack: add and remove from the same end

Deque: add and remove from either end

Priority queue: add, remove minimum

Implementing maps and sets

A binary search tree
● Good performance if you can keep it balanced
● Has good random and sequential access: the best

of both worlds

A hash table
● Very fast if you choose a good hash function

A linked list??
● ...pretty bad
● but used in the “chains” in a hash table

Implementing queues and deques

A linked list
● Can even get away with a singly-linked list

A circular array

A pair of lists (in a functional language)
● One for each end of the queue

Implementing stacks

Easier than queues:
● A linked list
● A dynamic array

Implementing priority queues

A binary heap

(More later...)

What we have studied

The data structures and ADTs above

+ algorithms that work on these data
 structures (sorting, Dijkstra's, etc.)

+ complexity

What we haven't had time for

Many algorithms

We have mostly concentrated on data
structures, not algorithms
● though they go together

The course DIT600 talks much more
about how to design algorithms (and
leads to various advanced algorithms
courses)

Merging priority queues

Go back to a binary heap as a binary tree
satisfying the heap property

We encoded this tree as an array – but
let's keep it as a binary tree instead

8

18 29

37 32 74 89

20 28 39 66

Merging priority queues

A merging priority queue supports
merging two heaps into one:

8

18 29

37 32 74 89

20 28 39 66

12

15 24+18 29

37 32 74 89

20 28 39 66

a heap containing
8, 12, 15, 18, 20, 24, 28, 29, 32, 37, 39, 66, 74, 89

Merging priority queues

Insertion and deleting the minimum can
both be implemented using merging!

To add an element to a heap:
● build a new heap containing just that one element
● merge the two heaps together!

To delete the minimum element:
● Well, the minimum element is at the root – so we

want a heap containing everything except the root
● so merge the left and right children of the root!

Merging priority queues

By representing a heap as a binary tree with the
heap property:
● We can implement a merge operation
● We can use this to implement add and deleteMin

We get a priority queue that's simpler than a
binary heap – and supports an extra operation
too!

Leftist heaps and skew heaps implement this
idea

More exotic: Fibonacci heaps (very odd)

Amortised complexity

Think of dynamic arrays:
● adding an element normally takes O(1) time...
● ...but occasionally it can take O(n) time
● The O(n) case happens seldom enough that adding n elements to an

empty array takes O(n) time

We say that adding an element takes amortised O(1) time

Amortised analysis deals with data structures where:
● each operation is normally fast
● occasionally it can be slower
● there are so few slow operations that the fast operations “balance

them out” and, in any sequence of operations, the average time per
operation is still fast

Amortised complexity

Splay trees are a balanced BST having
amortised O(log n) complexity
● The tree sometimes becomes unbalanced but this

happens rarely enough that the average time per
operation is still O(log n)

Skew heaps are a priority queue having
amortised O(log n) merge
● Similar to leftist heaps but much simpler, and

faster in practice!

Amortised complexity

By giving up absolute complexity bounds
and going for amortised complexity
instead, we can get data structures that
are
● simpler
● often faster
● but harder to analyse the complexity of

See book chapters 22 (splay trees) and 23
(skew heaps)

Probabilistic algorithms

Sometimes it helps to make random choices
● Example: quicksort with a random pivot has expected O(n log n)

complexity

Probabilistic algorithms and data structures use
randomness in their implementation
● Downside: harder to analyse, small chance of poor

performance (but if the probability is low enough...)

Skip lists: a nice map-like data structure with O(log
n) expected complexity

Randomised splay tree: a balanced BST with O(log n)
expected complexity

Functional data structures

Zippers: allow you to update functional data
structures efficiently
● http://www.haskell.org/haskellwiki/Zipper

Finger trees: a sequence data type with almost
magical complexity (O(1) access near each
end of the sequence, O(log n) random access,
O(log n) concatenation and splitting)
● http://www.soi.city.ac.uk/~ross/papers/FingerTree.pdf

http://www.haskell.org/haskellwiki/Zipper
http://www.soi.city.ac.uk/~ross/papers/FingerTree.pdf

Program specification

We wrote down invariants for our data
structures that explain how they work
and let us find bugs

By writing the invariant for a BST, we can
check that BST insertion leaves us with a
valid BST
● but we don't know that insertion actually inserts

the new element, or that it doesn't remove
existing elements

Program specification

We can specify the insertion function:
● define a function giving the set of all elements in a BST
● write a postcondition for insert, saying that the new

BST contains all elements it did before, plus the new
element

We can use these specifications as assertions
to help find bugs (design by contract), to help
with testing, or to prove that our programs
are correct
● Course: Testing, Debugging and Verification (DIT082)

How to design a data structure

How to design a data structure

Here is the tempting approach:
● Just write down some datatype and hack

something together that seems to work

Please don't do this!

Step 1

Write down what operations you need:
● add a thing, find a thing that has this property, …

Maybe there is already a data structure
that does what you want!

If so, use it!

If not, proceed to step 2.

Step 2

Do you need a fancy data structure at all?
● There is no point designing a data structure with O(log n)

everything, if in reality n = 10

“The First and Second Rules of Program
Optimisation:

1. Don’t do it.

2. (For experts only!): Don’t do it yet.”

See if you can get away with something simple,
like a list, map or array
● and profile your program to see where the bottlenecks are

Step 3

So you need a fancy data structure, and
you can't use an existing one

Can you adapt one?
● Example from the labs: adding decreaseKey() to a

binary heap, by combining it with a map
● Example from the book (19.2): adding array

functionality to a binary search tree

Step 4

Choose how you want to represent your
data structure
● Is it an array, a list, a tree, a graph?

Make sure you understand the meaning of
the representation
● Example: for a queue implemented as a circular

array, the representation is an array and two
integers low and high. The meaning (as a queue) of
such an array is all elements between low and high.

Step 5

Choose an invariant for the data structure,
if there is one
● Example: heap invariant, BST invariant

The invariant should normally guide the
searching operations of your data structure
● An invariant might make it harder to update the data

structure, so don't make it needlessly strong

This takes creativity!

Step 6

Finally, implement the operations,
making sure they respect the invariant
● A good invariant will often drive the

implementation: there will only be one sensible
way to implement the operations

Use assertions to check the invariant at
strategic places

Often, your idea will turn out to be wrong!
Refine it and try again. It takes practice!

Designing a data structure

Picking a representation and an invariant
takes creativity!

The only way to get better at it is to practise

The good news is, once you've picked an
invariant, there's often only one sensible
way to implement the operations

Let's see a few examples of how common
data structures “might have been designed”

Example: queues as circular arrays

Attempt 1: implement a queue using a dynamic array
● an array plus a “high” index
● the queue contains all elements from 0 to high-1

Problem: removing an element from the front of the queue
will take O(n) time

Attempt 2: add a “low” index, increment it to remove an
element
● the queue contains all elements from low to high-1

Problem: what happens when “low” reaches the end of the
array?

Solution: use a circular array and wrap around
● the queue contains all elements from low to high-1, possibly wrapping

around

Example: binary heaps

We pick a binary tree as the
representation. But finding the minimum
element in a binary tree takes O(n) time

Answer: put the smallest element at the
root
● with binary trees, it's a good idea to make the

invariant hold for all subtrees too – the minimum
of each subtree should be at the subtree's root

● this is then the heap invariant!

Example: binary heaps

Problem: we would really like to use an array for
compactness

Solution: represent the tree by an array. This only
works for complete binary trees – so add
completeness to the invariant
● to implement add: add the element to the end of the array and

fix the invariant
● only efficient way to delete an element: copy the final element

over that one and reduce the size by 1 – then fix the invariant

So choosing the representation and invariant forces
you to implement add and delete a particular way

Example: binary search trees

We pick a binary tree as the representation. But finding
the minimum element in a binary tree takes O(n) time

Answer: add the BST invariant – then we can do
lookups in O(log n) time on balanced trees
● there is only one natural way to implement insert and delete that

preserves the invariant

How to keep the tree balanced? Some kind of balance
invariant (e.g. AVL, red-black)

The invariant should be weak enough that we can
maintain it, but strong enough to enforce balance

Example: 2-3 trees

Problem: balanced binary search trees
are hard because they need to maintain
weird invariants
● the invariant “all leaves have the same depth”

does not work because the number of nodes in
such a tree must be a power of two minus one

Answer: be more lenient, so that a node
can even have 3 children
● now the invariant “all leaves have the same

depth” works, and life is much simpler!

Example: red-black trees

Binary search trees with a weird balance
invariant. How can you come up with
that?

Answer: don't! Instead, remember that a
red-black tree is a clever encoding of a 2-
3-4 tree.

A red-black tree is a 2-3-4 tree

138 17

1NIL 6

NIL NIL

11NIL NIL 15NIL NIL 2522

NIL NIL

27

NIL NIL

Example: red-black trees

Problem: 2-3-4 trees are a pain to implement because of
the many different cases with 2-nodes, 3-nodes and 4-
nodes

Answer: represent a 2-3-4 tree using a binary tree!
● a 3-node must be encoded by two nodes, a parent and a child
● a 4-node must be encoded by three nodes, a parent and two children

How will we tell if a part of the tree represents a 2-node, a
3-node or a 4-node?
● colour all the nodes that represent a 2-node, or the “start” of a 3-node or

4-node, black
● colour all the nodes that represent a “part” of a 3-node or 4-node red

Now just translate the 2-3-4 tree operations to this new
representation, and you have a red-black tree!

How to get better at this creative step?

Study other people's ideas!
● http://en.wikipedia.org/wiki/List_of_data_structures

● Book: Programming Pearls (excellent book)
● Book: Purely Functional Data Structures
● The documentation for Haskell data structures often has a

link to a paper explaining the ideas – looking at the source
code also helps

● Download the Java source code at
http://download.java.net/openjdk/jdk7/and look at how
things are implemented

Design some data structures!
● Just try things, even if it doesn't work

http://en.wikipedia.org/wiki/List_of_data_structures
http://download.java.net/openjdk/jdk7/

The exam
30th of May, 14:00 – 18:00, VV

The exam

You can bring a fusklapp, written (or
printed) on both sides

But no textbook!

Two sections: 6 normal questions and 3
harder questions
● Answer 4 out of 6 normal questions (plus pass the

labs) to get a G
● Answer 4 out of 6 normal questions, plus 2 out of

3 harder questions, to get a VG

The exam

Same style as last year's exam – so look at
that!

Best exam preparation: try last year's
exam, do the exercises, make sure you
understand the labs

What you need to know: the following!

Data structures

Arrays, dynamic arrays

Linked lists (single-linked, doubly-linked, header nodes,
circular, etc.)

Binary trees, binary search trees, AVL trees, red-black trees,
2-3 trees
● not deletion for AVL, red-black or 2-3 trees – but still for plain BSTs!

Hash tables
● Rehashing, linear probing, linear chaining – not how to construct a good

hash function

Graphs (weighted, unweighted, directed, undirected),
adjacency lists, adjacency matrices

Binary heaps

ADTs and their implementation

The basics of the Java collections framework
(iterators etc.)

Maps and sets, implemented using BSTs and
hash tables

Queues and deques, implemented using linked
lists or circular arrays

Stacks, implemented using linked lists or
dynamic arrays

Priority queues, implemented using binary heaps

Algorithms

Binary search

Algorithms on data structures (e.g., list
insertion)

Tree traversal: in-order, pre-order, post-
order

Graph algorithms:
● breadth-first and depth-first search
● Dijkstra's and Prim's algorithms (using a priority

queue)

Sorting algorithms

Bubblesort, selection sort, insertion sort
● In-place versions

Quicksort, mergesort
● Strategies for choosing the pivot – first element,

middle element, median-of-three, randomised

Heapsort
● In-place version

Counting sort

Theory

Complexity and big-O notation
● For iterative and recursive functions – basically,

what's in the complexity hand-in

Data structure invariants

Tail recursion and how to eliminate it (in
simple cases)

Good luck!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

