
  

Summing up
[none of this will be on the exam :)]



  

Lab deadlines

You can submit lab 3 until Friday (even if 
it's a first submission)

If you've missed the final deadline for a 
lab, don't panic!
● On June the 3rd I will sit in my office all afternoon 

and you can show me your lab in person
● Let me know in advance so that I can reopen Fire 

for you



  

A catalogue of data structures



  

Basic data structures

Arrays: good for random access
● dynamic arrays: resizeable

Linked lists: good for sequential access
● many variants – doubly linked, etc.

Trees: good for hierarchical data
● special case: binary trees

Graphs: good for cyclic data
● many variants: weighted, directed, etc.



  

Some data structures are special

In machine language, the memory is an array of 
integers
● To the processor, everything is an array

In imperative languages, the memory is an object 
graph with references being edges
● To the imperative language, everything is a graph (or an array)

In functional languages, every algebraic data type is a 
kind of tree (cf. Lisp S-expressions)
● To the functional language, everything is a tree (or a function)

Everything is built from arrays, object graphs and 
algebraic data types



  

Basic ADTs

Maps: maintain a key/value relationship
● An array is a sort of map where the keys are array indices

Sets: like a map but with only keys, no values

Queue: add to one end, remove from the other

Stack: add and remove from the same end

Deque: add and remove from either end

Priority queue: add, remove minimum



  

Implementing maps and sets

A binary search tree
● Good performance if you can keep it balanced
● Has good random and sequential access: the best 

of both worlds

A hash table
● Very fast if you choose a good hash function

A linked list??
● ...pretty bad
● but used in the “chains” in a hash table



  

Implementing queues and deques

A linked list
● Can even get away with a singly-linked list

A circular array

A pair of lists (in a functional language)
● One for each end of the queue



  

Implementing stacks

Easier than queues:
● A linked list
● A dynamic array



  

Implementing priority queues

A binary heap

(More later...)



  

What we have studied

The data structures and ADTs above

+ algorithms that work on these data
    structures (sorting, Dijkstra's, etc.)

+ complexity



  

What we haven't had time for



  

Many algorithms

We have mostly concentrated on data 
structures, not algorithms
● though they go together

The course DIT600 talks much more 
about how to design algorithms (and 
leads to various advanced algorithms 
courses)



  

Merging priority queues

Go back to a binary heap as a binary tree 
satisfying the heap property

We encoded this tree as an array – but 
let's keep it as a binary tree instead

8

18 29

37 32 74 89

20 28 39 66



  

Merging priority queues

A merging priority queue supports 
merging two heaps into one:

8

18 29

37 32 74 89

20 28 39 66

12

15 24+18 29

37 32 74 89

20 28 39 66

a heap containing
8, 12, 15, 18, 20, 24, 28, 29, 32, 37, 39, 66, 74, 89



  

Merging priority queues

Insertion and deleting the minimum can 
both be implemented using merging!

To add an element to a heap:
● build a new heap containing just that one element
● merge the two heaps together!

To delete the minimum element:
● Well, the minimum element is at the root – so we 

want a heap containing everything except the root
● so merge the left and right children of the root!



  

Merging priority queues

By representing a heap as a binary tree with the 
heap property:
● We can implement a merge operation
● We can use this to implement add and deleteMin

We get a priority queue that's simpler than a 
binary heap – and supports an extra operation 
too!

Leftist heaps and skew heaps implement this 
idea

More exotic: Fibonacci heaps (very odd)



  

Amortised complexity

Think of dynamic arrays:
● adding an element normally takes O(1) time...
● ...but occasionally it can take O(n) time
● The O(n) case happens seldom enough that adding n elements to an 

empty array takes O(n) time

We say that adding an element takes amortised O(1) time

Amortised analysis deals with data structures where:
● each operation is normally fast
● occasionally it can be slower
● there are so few slow operations that the fast operations “balance 

them out” and, in any sequence of operations, the average time per 
operation is still fast



  

Amortised complexity

Splay trees are a balanced BST having 
amortised O(log n) complexity
● The tree sometimes becomes unbalanced but this 

happens rarely enough that the average time per 
operation is still O(log n)

Skew heaps are a priority queue having 
amortised O(log n) merge
● Similar to leftist heaps but much simpler, and 

faster in practice!



  

Amortised complexity

By giving up absolute complexity bounds 
and going for amortised complexity 
instead, we can get data structures that 
are
● simpler
● often faster
● but harder to analyse the complexity of

See book chapters 22 (splay trees) and 23 
(skew heaps)



  

Probabilistic algorithms

Sometimes it helps to make random choices
● Example: quicksort with a random pivot has expected O(n log n) 

complexity

Probabilistic algorithms and data structures use 
randomness in their implementation
● Downside: harder to analyse, small chance of poor 

performance (but if the probability is low enough...)

Skip lists: a nice map-like data structure with O(log 
n) expected complexity

Randomised splay tree: a balanced BST with O(log n) 
expected complexity



  

Functional data structures

Zippers: allow you to update functional data 
structures efficiently
● http://www.haskell.org/haskellwiki/Zipper

Finger trees: a sequence data type with almost 
magical complexity (O(1) access near each 
end of the sequence, O(log n) random access, 
O(log n) concatenation and splitting)
● http://www.soi.city.ac.uk/~ross/papers/FingerTree.pdf

http://www.haskell.org/haskellwiki/Zipper
http://www.soi.city.ac.uk/~ross/papers/FingerTree.pdf


  

Program specification

We wrote down invariants for our data 
structures that explain how they work 
and let us find bugs

By writing the invariant for a BST, we can 
check that BST insertion leaves us with a 
valid BST
● but we don't know that insertion actually inserts 

the new element, or that it doesn't remove 
existing elements



  

Program specification

We can specify the insertion function:
● define a function giving the set of all elements in a BST
● write a postcondition for insert, saying that the new 

BST contains all elements it did before, plus the new 
element

We can use these specifications as assertions 
to help find bugs (design by contract), to help 
with testing, or to prove that our programs 
are correct
● Course: Testing, Debugging and Verification (DIT082)



  

How to design a data structure



  

How to design a data structure

Here is the tempting approach:
● Just write down some datatype and hack 

something together that seems to work

Please don't do this!



  

Step 1

Write down what operations you need:
● add a thing, find a thing that has this property, …

Maybe there is already a data structure 
that does what you want!

If so, use it!

If not, proceed to step 2.



  

Step 2

Do you need a fancy data structure at all?
● There is no point designing a data structure with O(log n) 

everything, if in reality n = 10

“The First and Second Rules of Program 
Optimisation:

1. Don’t do it.

2. (For experts only!): Don’t do it yet.”

See if you can get away with something simple, 
like a list, map or array
● and profile your program to see where the bottlenecks are



  

Step 3

So you need a fancy data structure, and 
you can't use an existing one

Can you adapt one?
● Example from the labs: adding decreaseKey() to a 

binary heap, by combining it with a map
● Example from the book (19.2): adding array 

functionality to a binary search tree



  

Step 4

Choose how you want to represent  your 
data structure
● Is it an array, a list, a tree, a graph?

Make sure you understand the meaning of 
the representation
● Example: for a queue implemented as a circular 

array, the representation is an array and two 
integers low and high. The meaning (as a queue) of 
such an array is all elements between low and high.



  

Step 5

Choose an invariant for the data structure, 
if there is one
● Example: heap invariant, BST invariant

The invariant should normally guide the 
searching operations of your data structure
● An invariant might make it harder to update the data 

structure, so don't make it needlessly strong

This takes creativity!



  

Step 6

Finally, implement the operations, 
making sure they respect the invariant
● A good invariant will often drive the 

implementation: there will only be one sensible 
way to implement the operations

Use assertions to check the invariant at 
strategic places

Often, your idea will turn out to be wrong! 
Refine it and try again. It takes practice!



  

Designing a data structure

Picking a representation and an invariant 
takes creativity!

The only way to get better at it is to practise

The good news is, once you've picked an 
invariant, there's often only one sensible 
way to implement the operations

Let's see a few examples of how common 
data structures “might have been designed”



  

Example: queues as circular arrays

Attempt 1: implement a queue using a dynamic array
● an array plus a “high” index
● the queue contains all elements from 0 to high-1

Problem: removing an element from the front of the queue 
will take O(n) time

Attempt 2: add a “low” index, increment it to remove an 
element
● the queue contains all elements from low to high-1

Problem: what happens when “low” reaches the end of the 
array?

Solution: use a circular array and wrap around
● the queue contains all elements from low to high-1, possibly wrapping 

around



  

Example: binary heaps

We pick a binary tree as the 
representation. But finding the minimum 
element in a binary tree takes O(n) time

Answer: put the smallest element at the 
root
● with binary trees, it's a good idea to make the 

invariant hold for all subtrees too – the minimum 
of each subtree should be at the subtree's root

● this is then the heap invariant!



  

Example: binary heaps

Problem: we would really like to use an array for 
compactness

Solution: represent the tree by an array. This only 
works for complete binary trees – so add 
completeness to the invariant
● to implement add: add the element to the end of the array and 

fix the invariant
● only efficient way to delete an element: copy the final element 

over that one and reduce the size by 1 – then fix the invariant

So choosing the representation and invariant forces 
you to implement add and delete a particular way



  

Example: binary search trees

We pick a binary tree as the representation. But finding 
the minimum element in a binary tree takes O(n) time

Answer: add the BST invariant – then we can do 
lookups in O(log n) time on balanced trees
● there is only one natural way to implement insert and delete that 

preserves the invariant

How to keep the tree balanced? Some kind of balance 
invariant (e.g. AVL, red-black)

The invariant should be weak enough that we can 
maintain it, but strong enough to enforce balance



  

Example: 2-3 trees

Problem: balanced binary search trees 
are hard because they need to maintain 
weird invariants
● the invariant “all leaves have the same depth” 

does not work because the number of nodes in 
such a tree must be a power of two minus one

Answer: be more lenient, so that a node 
can even have 3 children
● now the invariant “all leaves have the same 

depth” works, and life is much simpler!



  

Example: red-black trees

Binary search trees with a weird balance 
invariant. How can you come up with 
that?

Answer: don't! Instead, remember that a 
red-black tree is a clever encoding of a 2-
3-4 tree.



  

A red-black tree is a 2-3-4 tree

138 17

1NIL 6

NIL NIL

11NIL NIL 15NIL NIL 2522

NIL NIL

27

NIL NIL



  

Example: red-black trees

Problem: 2-3-4 trees are a pain to implement because of 
the many different cases with 2-nodes, 3-nodes and 4-
nodes

Answer: represent a 2-3-4 tree using a binary tree!
● a 3-node must be encoded by two nodes, a parent and a child
● a 4-node must be encoded by three nodes, a parent and two children

How will we tell if a part of the tree represents a 2-node, a 
3-node or a 4-node?
● colour all the nodes that represent a 2-node, or the “start” of a 3-node or 

4-node, black
● colour all the nodes that represent a “part” of a 3-node or 4-node red

Now just translate the 2-3-4 tree operations to this new 
representation, and you have a red-black tree!



  

How to get better at this creative step?

Study other people's ideas!
● http://en.wikipedia.org/wiki/List_of_data_structures

● Book: Programming Pearls (excellent book)
● Book: Purely Functional Data Structures
● The documentation for Haskell data structures often has a 

link to a paper explaining the ideas – looking at the source 
code also helps

● Download the Java source code at 
http://download.java.net/openjdk/jdk7/and look at how 
things are implemented

Design some data structures!
● Just try things, even if it doesn't work

http://en.wikipedia.org/wiki/List_of_data_structures
http://download.java.net/openjdk/jdk7/


  

The exam
30th of May, 14:00 – 18:00, VV



  

The exam

You can bring a fusklapp, written (or 
printed) on both sides

But no textbook!

Two sections: 6 normal questions and 3 
harder questions
● Answer 4 out of 6 normal questions (plus pass the 

labs) to get a G
● Answer 4 out of 6 normal questions, plus 2 out of 

3 harder questions, to get a VG



  

The exam

Same style as last year's exam – so look at 
that!

Best exam preparation: try last year's 
exam, do the exercises, make sure you 
understand the labs

What you need to know: the following!



  

Data structures

Arrays, dynamic arrays

Linked lists (single-linked, doubly-linked, header nodes, 
circular, etc.)

Binary trees, binary search trees, AVL trees, red-black trees, 
2-3 trees
● not deletion for AVL, red-black or 2-3 trees – but still for plain BSTs!

Hash tables
● Rehashing, linear probing, linear chaining – not how to construct a good 

hash function

Graphs (weighted, unweighted, directed, undirected), 
adjacency lists, adjacency matrices

Binary heaps



  

ADTs and their implementation

The basics of the Java collections framework 
(iterators etc.)

Maps and sets, implemented using BSTs and 
hash tables

Queues and deques, implemented using linked 
lists or circular arrays

Stacks, implemented using linked lists or 
dynamic arrays

Priority queues, implemented using binary heaps



  

Algorithms

Binary search

Algorithms on data structures (e.g., list 
insertion)

Tree traversal: in-order, pre-order, post-
order

Graph algorithms:
● breadth-first and depth-first search
● Dijkstra's and Prim's algorithms (using a priority 

queue)



  

Sorting algorithms

Bubblesort, selection sort, insertion sort
● In-place versions

Quicksort, mergesort
● Strategies for choosing the pivot – first element, 

middle element, median-of-three, randomised

Heapsort
● In-place version

Counting sort



  

Theory

Complexity and big-O notation
● For iterative and recursive functions – basically, 

what's in the complexity hand-in

Data structure invariants

Tail recursion and how to eliminate it (in 
simple cases)



  

Good luck!
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