
Dijkstra's algorithm,
Prim's algorithm

The shortest path problem

Find the shortest path from point A to point B
in a weighted graph
(the path with least weight)

Useful in e.g.,
route planning,
network routing

Most common approach:
Dijkstra's algorithm,
which works when all
edges have positive weight

Maldon

Clacton

Harwich

Tiptree

Blaxhall

Feering

15

46

40
53

3
31

17
29

11 8

40

Dijkstra's algorithm

Dijkstra's algorithm computes
the distance from a start
node to all other nodes

Idea: maintain a set S
(actually a map)
of nodes whose
distances we know

Initially, S
only contains the start
node, with distance 0

Dijkstra's algorithm

The goal: to find the
shortest path that
does not lead to a
node in S

This path must be:
● The shortest path to

some node in S, then
● a single edge to get to

the node

(Why?) Maldon

Clacton

Harwich

Tiptree

Blaxhall

Feering

15

46

40
53

3
31

17
29

11 8

40

Dijkstra's algorithm

For each node x in S, and
each neighbour y of x:
● Add the distance to x and

the distance from x to y

Whichever y has
the shortest distance,
add it to S!
● The shortest path to y is:

the shortest path to x,
plus the edge from x to y

Repeat until all nodes
are in S Maldon

Clacton

Harwich

Tiptree

Blaxhall

Feering

15

46

40
53

3
31

17
29

11 8

40

Dijkstra's algorithm

S = {Dunwich → 0}

Neighbours of Dunwich
are Blaxhall (distance 15),
Harwich (distance 53)

So add Blaxhall → 15
to S

15

46

40
53

3
31

17
29

11 8

40

Dijkstra's algorithm

S = {Dunwich → 0,
 Blaxhall → 15}

Neighbours of S
are:
● Feering (distance

15 + 46 = 61)
● Harwich (distance 53 –

also via Blaxhall
15 + 40 = 55)

So add Harwich → 53
to S

15

46

40
53

3
31

17
29

11 8

40

Dijkstra's algorithm

S = {Dunwich → 0,
 Blaxhall → 15,
 Harwich → 53}

Neighbours of S
are:
● Feering (distance

15 + 46 = 61)
● Tiptree (distance

53 + 31 = 84)
● Clacton (distance

53 + 17 = 70)

So add Feering → 61
to S

15

46

40
53

3
31

17
29

11 8

40

Dijkstra's algorithm

S = {Dunwich → 0,
 Blaxhall → 15,
 Harwich → 53,
 Feering → 61}

Neighbours of S
are:
● Tiptree (distance

61 + 3 = 64,
also via Harwich 55 + 29 = 84)

● Clacton (distance
53 + 17 = 70)

● Maldon (distance
61 + 11 = 72)

So add Tiptree → 64
to S

15

46

40
53

3
31

17
29

11 8

40

Dijkstra's algorithm

S = {Dunwich → 0,
 Blaxhall → 15,
 Harwich → 53,
 Feering → 61,
 Tiptree → 64}

Neighbours of S
are:
● Clacton (distance

53 + 17 = 70,
also via Tiptree 64 + 29 = 93)

● Maldon (distance
61 + 11 = 72,
also via Tiptree 64 + 8 = 72)

So add Clacton → 70
to S

15

46

40
53

3
31

17
29

11 8

40

Dijkstra's algorithm

S = {Dunwich → 0,
 Blaxhall → 15,
 Harwich → 53,
 Feering → 61,
 Tiptree → 64,
 Clacton → 70}

Neighbours of S
are:
● Maldon (distance

61 + 11 = 72,
also via Tiptree 64 + 8 = 72,
also via Clacton 70 + =

So add Maldon → 72
to S

15

46

40
53

3
31

17
29

11 8

40

Dijkstra's algorithm

S = {Dunwich → 0,
 Blaxhall → 15,
 Harwich → 53,
 Feering → 61,
 Tiptree → 64,
 Clacton → 70,
 Maldon → 72}

Finished!

Dijkstra's algorithm
enumerates nodes in
order of how far away
they are from the start node

15

46

40
53

3
31

17
29

11 8

40

Dijkstra's algorithm

Let S = {start node → 0}

While not all nodes are in S,
● For each node x → d in S, and each neighbour y of

x, calculate d' = d + cost of edge from x to y
● Take the smallest d' calculated and its y and add

y → d' to S

What is the efficiency of this algorithm?

Dijkstra's algorithm, refined

This version of the algorithm has two
problems:
● It is not very efficient (O(n2), where n is the

number of nodes)
● It only computes distances, not paths

The second one is easy to fix: also maintain a map P
that maps a node to its predecessor in the shortest
path

Dijkstra's algorithm, with paths

Let S = {start node → 0} and P = {}

While not all nodes are in S,
● For each node x → d in S, and each neighbour y of

x, calculate d' = d + cost of edge from x to y
● Take the smallest d' calculated and its x and y and

add y → d' to S, and y → x to P

You can find the path from the start node
to any node by tracing backwards
through P

Dijkstra's algorithm with paths,
an excerpt

S = {Dunwich → 0,
 Blaxhall → 15}

P = {Blaxhall → Dunwich}

Neighbours of S
are:
● Feering (distance 61

via Blaxhall)
● Harwich (distance 53

via Dunwich)

So add Harwich → 53 to S

Also add
Harwich → Dunwich to P

15

46

40
53

3
31

17
29

11 8

40

Dijkstra's algorithm with paths,
an excerpt

S = {Dunwich → 0,
 Blaxhall → 15,
 Harwich → 53}

P = {Blaxhall → Dunwich,
 Harwich → Dunwich}

Neighbours of S
are:
● Feering (distance 61 via Blaxhall)
● Tiptree (distance 84 via Harwich)
● Clacton (distance 70 via Harwich)

So add Feering → 61 to S

Also add Feering → Blaxhall to P

15

46

40
53

3
31

17
29

11 8

40

Dijkstra's algorithm with paths,
an excerpt

S = {Dunwich → 0,
 Blaxhall → 15,
 Harwich → 53,
 Feering → 61}

P = {Blaxhall → Dunwich,
 Harwich → Dunwich,
 Feering → Blaxhall}

Neighbours of S
are:
● Tiptree (distance 64 via Feering)
● Clacton (distance 53 via Harwich)
● Maldon (distance 61 via Feering)

61 + 11 = 72)

So add Tiptree → 64 to S

Also add Tiptree → Feering to S

15

46

40
53

3
31

17
29

11 8

40

Dijkstra's algorithm with paths,
an excerpt

S = {Dunwich → 0,
 Blaxhall → 15,
 Harwich → 53,
 Feering → 61,
 Tiptree → 64}

P = {Blaxhall → Dunwich,
 Harwich → Dunwich,
 Feering → Blaxhall,
 Tiptree → Feering}

We know Tiptree is 64 away
from Dunwich

If we want to know the path, look in P:
● Tiptree → Feering
● Feering → Blaxhall
● Blaxhall → Dunwich

So the shortest path is
Dunwich → Blaxhall → Feering → Tiptree

15

46

40
53

3
31

17
29

11 8

40

Dijkstra's algorithm, made efficient

The other problem with Dijkstra's
algorithm so far was that it's O(n2)

This is because this step:
● For each node x → d in S, and each neighbour y of

x, calculate d' = d + cost of edge from x to y

takes O(n) time, and we execute it for
every node we add to S

How can we make this faster?

Dijkstra's algorithm, made efficient

Answer: use a priority queue!

The queue will store, for each neighbour of a node in
S, a record containing:
● The node
● The node's predecessor in the path
● The distance to the node following that path

Whenever we add a node to S, we will add a record to
the queue for each of its neighbours that are not in S

Instead of searching for the nearest node not in S, we
will ask the priority queue for the record with the
smallest distance

Dijkstra's algorithm

S = {Dunwich → 0}

P = {}

Q = {Blaxhall 15 via Dunwich,
 Harwich 53 via Dunwich}

Remove the smallest
element of Q,
“Blaxhall 15 via Dunwich”.
Add Blaxhall → 15 to S,
Blaxhall → Dunwich to P,
and add Blaxhall's neighbours
to Q.

15

46

40
53

3
31

17
29

11 8

40

Dijkstra's algorithm

S = {Dunwich → 0,
 Blaxhall → 15}

P = {Blaxhall → Dunwich}

Q = {Harwich 53 via Dunwich,
 Feering 61 via Blaxhall,
 Harwich 55 via Blaxhall}

Remove the smallest
element of Q,
“Harwich 53 via Dunwich”.
Add Harwich → 53 to S,
Harwich → Dunwich to P,
and add Harwich's neighbours
to Q.

15

46

40
53

3
31

17
29

11 8

40

Dijkstra's algorithm

S = {Dunwich → 0,
 Blaxhall → 15,
 Harwich → 53}

P = {Blaxhall → Dunwich,
 Harwich → Dunwich}

Q = {Feering 61 via Blaxhall,
 Harwich 55 via Blaxhall,
 Tiptree 84 via Harwich,
 Clacton 70 via Harwich}

Remove the smallest
element of Q,
“Harwich 55 via Blaxhall”.
Oh! Harwich is already in S.
So just ignore it.

15

46

40
53

3
31

17
29

11 8

40

Dijkstra's algorithm

S = {Dunwich → 0,
 Blaxhall → 15,
 Harwich → 53}

P = {Blaxhall → Dunwich,
 Harwich → Dunwich}

Q = {Feering 61 via Blaxhall,
 Tiptree 84 via Harwich,
 Clacton 70 via Harwich}

Remove the smallest
element of Q,
“Feering 61 via Blaxhall”.
Add Feering → 61 to S,
Feering → Blaxhall to P,
and add Feering's neighbours
to Q.

15

46

40
53

3
31

17
29

11 8

40

Dijkstra's algorithm

S = {Dunwich → 0,
 Blaxhall → 15,
 Harwich → 53,
 Feering → 61}

P = {Blaxhall → Dunwich,
 Harwich → Dunwich,
 Feering → Blaxhall}

Q = {Tiptree 84 via Harwich,
 Tiptree 64 via Feering,
 Maldon 72 via Feering,
 Clacton 70 via Harwich}

15

46

40
53

3
31

17
29

11 8

40

Dijkstra's algorithm, efficiently

Let S = {start node → 0}, P = {} and Q = {}

Add a record “x distance d via start node” for all
of the start node's neighbours x (where the edge
has weight d)

While not all nodes are in S,
● Remove the smallest element “y distance d via x” of Q (the

record that has the smallest distance)
● If y is in S, do nothing
● Otherwise, add y → d to S, y → x to P, and for all of y's

neighbours z add “z distance (d + weight of edge from y to z)
via y” to Q

Dijkstra's algorithm, efficiently

Let S = {start node → 0}, P = {} and Q = {}

Add a record “x distance d via start node” for all
of the start node's neighbours x (where the edge
has weight d)

While not all nodes are in S,
● Remove the smallest element “y distance d via x” of Q (the

record that has the smallest distance)
● If y is in S, do nothing
● Otherwise, add y → d to S, y → x to P, and for all of y's

neighbours z add “z distance (d + weight of edge from y to z)
via y” to Q

Running time:
O(V log E)

where V = number of nodes
E = number of edges

Minimum spanning trees

Maldon

Clacton

Harwich

Tiptree

Blaxhall

Feering

15

40

3

17
29

8

A spanning tree of a graph
is a subgraph (a graph
obtained by deleting
some of the edges) which:
● is acyclic
● is connected

A minimum spanning
tree is one where the
total weight of the edges
is as low as possible

Minimum spanning trees

Maldon

Clacton

Harwich

Tiptree

Blaxhall

Feering

15

40

3

17
29

8

15

46

40
53

3
31

17
29

11 8

40

Prim's algorithm

We will build a minimum spanning tree by
starting with no edges and adding edges until
the graph is connected

Keep a set S of all the nodes that are in the tree
so far, initially containing one arbitrary node

While there is a node not in S:
● Pick the lowest-weight edge between a node in S and a

node not in S
● Add that edge to the spanning tree, and add the node to S

Minimum spanning trees

15

46

40
53

3
31

17
29

11 8

40

S = {Feering}
Lowest-weight edge

from S to not-S
is Feering → Tiptree

Minimum spanning trees

3

15

46

40
53

3
31

17
29

11 8

40

S = {Feering, Tiptree}
Lowest-weight edge

from S to not-S
is Tiptree → Maldon

Minimum spanning trees

3

8

15

46

40
53

3
31

17
29

11 8

40

S = {Feering, Tiptree,
Maldon}

Lowest-weight edge
from S to not-S

is Tiptree → Clacton

Minimum spanning trees

3

29

8

15

46

40
53

3
31

17
29

11 8

40

S = {Feering, Tiptree,
Maldon, Clacton}

Lowest-weight edge
from S to not-S

is Clacton → Harwich

Minimum spanning trees

3

17
29

8

15

46

40
53

3
31

17
29

11 8

40

S = {Feering, Tiptree,
Maldon, Clacton,

Harwich}
Lowest-weight edge

from S to not-S
is Harwich → Blaxhall

Minimum spanning trees

40

3

17
29

8

15

46

40
53

3
31

17
29

11 8

40

S = {Feering, Tiptree,
Maldon, Clacton,

Harwich, Blaxhall}
Lowest-weight edge

from S to not-S
is Blaxhall → Dunwich

Minimum spanning trees

Maldon

Clacton

Harwich

Tiptree

Blaxhall

Feering

15

40

3

17
29

8

15

46

40
53

3
31

17
29

11 8

40

Notice:
we get a minimum

spanning tree
whatever node we start at!

For this graph,
because there is only one
minimum spanning tree,

we always get that one.

Prim's algorithm, efficiently

The operation
● Pick the lowest-weight edge between a node in S and a

node not in S

takes O(n) time if we're not careful! Then Prim's
algorithm will be O(n2)

To implement Prim's algorithm, use a priority queue
● Whenever you add a node to S, add all of its edges to not-S to a

priority queue
● To find the lowest-weight edge, just find the minimum element of

the priority queue
● Just like in Dijkstra's algorithm, the priority queue might return an

edge between two elements that are now in S: ignore it

New time: O(n log n) :)

Summary

Dijkstra's algorithm – finding shortest paths
● Bellman-Ford: works when weights are negative
● A* - faster but assumes the triangle inequality

Prim's algorithm – finding minimum spanning trees

Both are greedy algorithms – they repeatedly find the
“best” next element
● Common style of algorithm design

Both use a priority queue to get O(n log n)

Many many many more graph algorithms
● Unfortunately the book doesn't mention many – see

http://en.wikipedia.org/wiki/List_of_algorithms#Graph_algorithms
for a long list

http://en.wikipedia.org/wiki/List_of_algorithms#Graph_algorithms

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

