
Dijkstra's algorithm,
Prim's algorithm



The shortest path problem

Find the shortest path from point A to point B 
in a weighted graph
(the path with least weight)

Useful in e.g.,
route planning,
network routing

Most common approach:
Dijkstra's algorithm,
which works when all
edges have positive weight
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Dijkstra's algorithm

Dijkstra's algorithm computes
the distance from a start
node to all other nodes

Idea: maintain a set S
(actually a map)
of nodes whose
distances we know

Initially, S
only contains the start
node, with distance 0



Dijkstra's algorithm

The goal: to find the
shortest path that
does not lead to a
node in S

This path must be:
● The shortest path to

some node in S, then
● a single edge to get to

the node
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Dijkstra's algorithm

For each node x in S, and
each neighbour y of x:
● Add the distance to x and

the distance from x to y

Whichever y has
the shortest distance,
add it to S!
● The shortest path to y is:

the shortest path to x,
plus the edge from x to y

Repeat until all nodes
are in S Maldon
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Dijkstra's algorithm

S = {Dunwich → 0}

Neighbours of Dunwich
are Blaxhall (distance 15),
Harwich (distance 53)

So add Blaxhall → 15
to S
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Dijkstra's algorithm

S = {Dunwich → 0,
         Blaxhall → 15}

Neighbours of S
are:
● Feering (distance

15 + 46 = 61)
● Harwich (distance 53 –

also via Blaxhall
15 + 40 = 55)

So add Harwich → 53
to S
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Dijkstra's algorithm

S = {Dunwich → 0,
         Blaxhall → 15,
         Harwich → 53}

Neighbours of S
are:
● Feering (distance

15 + 46 = 61)
● Tiptree (distance

53 + 31 = 84)
● Clacton (distance

53 + 17 = 70)

So add Feering → 61
to S
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Dijkstra's algorithm

S = {Dunwich → 0,
         Blaxhall → 15,
         Harwich → 53,
         Feering → 61}

Neighbours of S
are:
● Tiptree (distance

61 + 3 = 64,
also via Harwich 55 + 29 = 84)

● Clacton (distance
53 + 17 = 70)

● Maldon (distance
61 + 11 = 72)

So add Tiptree → 64
to S
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Dijkstra's algorithm

S = {Dunwich → 0,
         Blaxhall → 15,
         Harwich → 53,
         Feering → 61,
         Tiptree → 64}

Neighbours of S
are:
● Clacton (distance

53 + 17 = 70,
also via Tiptree 64 + 29 = 93)

● Maldon (distance
61 + 11 = 72,
also via Tiptree 64 + 8 = 72)

So add Clacton → 70
to S
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Dijkstra's algorithm

S = {Dunwich → 0,
         Blaxhall → 15,
         Harwich → 53,
         Feering → 61,
         Tiptree → 64,
         Clacton → 70}

Neighbours of S
are:
● Maldon (distance

61 + 11 = 72,
also via Tiptree 64 + 8 = 72,
also via Clacton 70 + =

So add Maldon → 72
to S
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Dijkstra's algorithm

S = {Dunwich → 0,
         Blaxhall → 15,
         Harwich → 53,
         Feering → 61,
         Tiptree → 64,
         Clacton → 70,
         Maldon → 72}

Finished!

Dijkstra's algorithm
enumerates nodes in
order of how far away
they are from the start node
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Dijkstra's algorithm

Let S = {start node → 0}

While not all nodes are in S,
● For each node x → d in S, and each neighbour y of 

x, calculate d' = d + cost of edge from x to y
● Take the smallest d' calculated and its y and add

y → d' to S

What is the efficiency of this algorithm?



Dijkstra's algorithm, refined

This version of the algorithm has two 
problems:
● It is not very efficient (O(n2), where n is the 

number of nodes)
● It only computes distances, not paths

The second one is easy to fix: also maintain a map P 
that maps a node to its predecessor in the shortest 
path



Dijkstra's algorithm, with paths

Let S = {start node → 0} and P = {}

While not all nodes are in S,
● For each node x → d in S, and each neighbour y of 

x, calculate d' = d + cost of edge from x to y
● Take the smallest d' calculated and its x and y and 

add y → d' to S, and y → x to P

You can find the path from the start node 
to any node by tracing backwards 
through P



Dijkstra's algorithm with paths,
an excerpt

S = {Dunwich → 0,
         Blaxhall → 15}

P = {Blaxhall → Dunwich}

Neighbours of S
are:
● Feering (distance 61

via Blaxhall)
● Harwich (distance 53

via Dunwich)

So add Harwich → 53 to S

Also add
Harwich → Dunwich to P
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Dijkstra's algorithm with paths,
an excerpt

S = {Dunwich → 0,
         Blaxhall → 15,
         Harwich → 53}

P = {Blaxhall → Dunwich,
         Harwich → Dunwich}

Neighbours of S
are:
● Feering (distance 61 via Blaxhall)
● Tiptree (distance 84 via Harwich)
● Clacton (distance 70 via Harwich)

So add Feering → 61 to S

Also add Feering → Blaxhall to P
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Dijkstra's algorithm with paths,
an excerpt

S = {Dunwich → 0,
         Blaxhall → 15,
         Harwich → 53,
         Feering → 61}

P = {Blaxhall → Dunwich,
         Harwich → Dunwich,
         Feering → Blaxhall}

Neighbours of S
are:
● Tiptree (distance 64 via Feering)
● Clacton (distance 53 via Harwich)
● Maldon (distance 61 via Feering)

61 + 11 = 72)

So add Tiptree → 64 to S

Also add Tiptree → Feering to S
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Dijkstra's algorithm with paths,
an excerpt

S = {Dunwich → 0,
         Blaxhall → 15,
         Harwich → 53,
         Feering → 61,
         Tiptree → 64}

P = {Blaxhall → Dunwich,
         Harwich → Dunwich,
         Feering → Blaxhall,
         Tiptree → Feering}

We know Tiptree is 64 away
from Dunwich

If we want to know the path, look in P:
● Tiptree → Feering
● Feering → Blaxhall
● Blaxhall → Dunwich

So the shortest path is
Dunwich → Blaxhall → Feering → Tiptree
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Dijkstra's algorithm, made efficient

The other problem with Dijkstra's 
algorithm so far was that it's O(n2)

This is because this step:
● For each node x → d in S, and each neighbour y of 

x, calculate d' = d + cost of edge from x to y

takes O(n) time, and we execute it for 
every node we add to S

How can we make this faster?



Dijkstra's algorithm, made efficient

Answer: use a priority queue!

The queue will store, for each neighbour of a node in 
S, a record containing:
● The node
● The node's predecessor in the path
● The distance to the node following that path

Whenever we add a node to S, we will add a record to 
the queue for each of its neighbours that are not in S

Instead of searching for the nearest node not in S, we 
will ask the priority queue for the record with the 
smallest distance



Dijkstra's algorithm

S = {Dunwich → 0}

P = {}

Q = {Blaxhall 15 via Dunwich,
          Harwich 53 via Dunwich}

Remove the smallest
element of Q,
“Blaxhall 15 via Dunwich”.
Add Blaxhall → 15 to S,
Blaxhall → Dunwich to P,
and add Blaxhall's neighbours
to Q.
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Dijkstra's algorithm

S = {Dunwich → 0,
         Blaxhall → 15}

P = {Blaxhall → Dunwich}

Q = {Harwich 53 via Dunwich,
          Feering 61 via Blaxhall,
          Harwich 55 via Blaxhall}

Remove the smallest
element of Q,
“Harwich 53 via Dunwich”.
Add Harwich → 53 to S,
Harwich → Dunwich to P,
and add Harwich's neighbours
to Q.
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Dijkstra's algorithm

S = {Dunwich → 0,
         Blaxhall → 15,
         Harwich → 53}

P = {Blaxhall → Dunwich,
         Harwich → Dunwich}

Q = {Feering 61 via Blaxhall,
          Harwich 55 via Blaxhall,
          Tiptree 84 via Harwich,
          Clacton 70 via Harwich}

Remove the smallest
element of Q,
“Harwich 55 via Blaxhall”.
Oh! Harwich is already in S.
So just ignore it.
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Dijkstra's algorithm

S = {Dunwich → 0,
         Blaxhall → 15,
         Harwich → 53}

P = {Blaxhall → Dunwich,
         Harwich → Dunwich}

Q = {Feering 61 via Blaxhall,
          Tiptree 84 via Harwich,
          Clacton 70 via Harwich}

Remove the smallest
element of Q,
“Feering 61 via Blaxhall”.
Add Feering → 61 to S,
Feering → Blaxhall to P,
and add Feering's neighbours
to Q.
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Dijkstra's algorithm

S = {Dunwich → 0,
         Blaxhall → 15,
         Harwich → 53,
         Feering → 61}

P = {Blaxhall → Dunwich,
         Harwich → Dunwich,
         Feering → Blaxhall}

Q = {Tiptree 84 via Harwich,
          Tiptree 64 via Feering,
          Maldon 72 via Feering,
          Clacton 70 via Harwich}
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Dijkstra's algorithm, efficiently

Let S = {start node → 0}, P = {} and Q = {}

Add a record “x distance d via start node” for all 
of the start node's neighbours x (where the edge 
has weight d)

While not all nodes are in S,
● Remove the smallest element “y distance d via x” of Q (the 

record that has the smallest distance)
● If y is in S, do nothing
● Otherwise, add y → d to S, y → x to P, and for all of y's 

neighbours z add “z distance (d + weight of edge from y to z) 
via y” to Q



Dijkstra's algorithm, efficiently

Let S = {start node → 0}, P = {} and Q = {}

Add a record “x distance d via start node” for all 
of the start node's neighbours x (where the edge 
has weight d)

While not all nodes are in S,
● Remove the smallest element “y distance d via x” of Q (the 

record that has the smallest distance)
● If y is in S, do nothing
● Otherwise, add y → d to S, y → x to P, and for all of y's 

neighbours z add “z distance (d + weight of edge from y to z) 
via y” to Q

Running time:
O(V log E)

where V = number of nodes
E = number of edges



Minimum spanning trees
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A spanning tree of a graph
is a subgraph (a graph
obtained by deleting
some of the edges) which:
● is acyclic
● is connected

A minimum spanning
tree is one where the
total weight of the edges
is as low as possible



Minimum spanning trees
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Prim's algorithm

We will build a minimum spanning tree by 
starting with no edges and adding edges until 
the graph is connected

Keep a set S of all the nodes that are in the tree 
so far, initially containing one arbitrary node

While there is a node not in S:
● Pick the lowest-weight edge between a node in S and a 

node not in S
● Add that edge to the spanning tree, and add the node to S



Minimum spanning trees
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S = {Feering}
Lowest-weight edge

from S to not-S
is Feering → Tiptree



Minimum spanning trees
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S = {Feering, Tiptree}
Lowest-weight edge

from S to not-S
is Tiptree → Maldon



Minimum spanning trees
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S = {Feering, Tiptree,
Maldon}

Lowest-weight edge
from S to not-S

is Tiptree → Clacton



Minimum spanning trees
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S = {Feering, Tiptree,
Maldon, Clacton}

Lowest-weight edge
from S to not-S

is Clacton → Harwich



Minimum spanning trees
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S = {Feering, Tiptree,
Maldon, Clacton,

Harwich}
Lowest-weight edge

from S to not-S
is Harwich → Blaxhall



Minimum spanning trees
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S = {Feering, Tiptree,
Maldon, Clacton,

Harwich, Blaxhall}
Lowest-weight edge

from S to not-S
is Blaxhall → Dunwich



Minimum spanning trees
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Notice:
we get a minimum

spanning tree
whatever node we start at!

For this graph,
because there is only one
minimum spanning tree,

we always get that one.



Prim's algorithm, efficiently

The operation
● Pick the lowest-weight edge between a node in S and a

node not in S

takes O(n) time if we're not careful! Then Prim's 
algorithm will be O(n2)

To implement Prim's algorithm, use a priority queue
● Whenever you add a node to S, add all of its edges to not-S to a 

priority queue
● To find the lowest-weight edge, just find the minimum element of 

the priority queue
● Just like in Dijkstra's algorithm, the priority queue might return an 

edge between two elements that are now in S: ignore it

New time: O(n log n) :)



Summary

Dijkstra's algorithm – finding shortest paths
● Bellman-Ford: works when weights are negative
● A* - faster but assumes the triangle inequality

Prim's algorithm – finding minimum spanning trees

Both are greedy algorithms – they repeatedly find the 
“best” next element
● Common style of algorithm design

Both use a priority queue to get O(n log n)

Many many many more graph algorithms
● Unfortunately the book doesn't mention many – see

http://en.wikipedia.org/wiki/List_of_algorithms#Graph_algorithms
for a long list

http://en.wikipedia.org/wiki/List_of_algorithms#Graph_algorithms
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