
Exam
Data structures DIT960

Time Thursday 30th May 2013, 14:00–18:00

Place V-huset

Course responsible Nick Smallbone, tel. 0707 183062

The exam consists of six easy questions (nos. 1–6), two hard questions (nos. 7–
8) and one extra hard question (no. 9), which counts as two hard questions.

For Godkänd you need to answer at least four easy questions correctly.

For Väl Godkänd you also need to answer two hard questions correctly.
Answering question 9 correctly counts as two hard questions; a partial answer
to question 9 may count as one hard question.

Allowed aids One A4 piece of paper of notes, which may be hand-written or
typed. You may write on both sides.

You may also bring a dictionary.

Note Begin each question on a new page.

Write your anonymous code (not your name) on every page.

Excessively complicated answers might be rejected.

Write legibly!

Data structures DIT960 Write your anonymous code, not your name _________________

1. Suppose you have the following hash table, implemented using linear
probing. For the hash function we are using the identity function, h(x) =
x.

0 1 2 3 4 5 6 7 8

9 18 12 3 14 4 21

a) In which order could the elements have been added to the hash table?
There are several correct answers, and you should choose them all.

 ▢ 9, 14, 4, 18, 12, 3, 21

 ▢ 12, 3, 14, 18, 4, 9, 21

 ▢ 12, 14, 3, 9, 4, 18, 21

 9, 12, 14, 3, 4, 21, 18▢

 12, 9, 18, 3, 14, 21, 4▢

Answer: 12, 14, 3, 9, 4, 18, 21, or 9, 12, 14, 3, 4, 21, 18.

b) Add 30 to the hash table (assume there is no rehashing). What does the
hash table look like now?

0 1 2 3 4 5 6 7 8

9 18 12 3 14 4 21 30

c) Remove 3 from the hash table. What does it look like now?

0 1 2 3 4 5 6 7 8

9 18 12 XXX 14 4 21 30

Answer: 3 is replaced by a 'deleted' marker.

Data structures DIT960 Write your anonymous code, not your name _________________

2. Implement binary search in Java. Your method should have the following
type:

int search(Object[] array, Object key)

It should return the index of the object, or -1 if the object could not be
found. It should take O(log n) time, and must not use recursion, or any
Java standard library methods.

Warning: there are many different ways to write a wrong binary search!
To pass this question, your code must be correct. Make extra sure that
you cannot get into an infinite loop. You do not, however, have to
consider integer overflow.

Answer on a separate sheet of paper. You may want to start from the
following skeleton program:

int search(Object[] array, Object key) {
 int low = 0;
 int high = array.length - 1;
 while(...) {
 int mid = ...;
 if (array[mid].compare(key) < 0) {
 // array[mid] < key
 ...
 } else if (array[mid].compare(key) > 0) {
 // array[mid] > key
 ...
 } else {
 // array[mid] == key
 ...
 }
 }
 ...
}

Data structures DIT960 Write your anonymous code, not your name _________________

One possible answer:

int search(Object[] array, Object key) {
 int low = 0;
 int high = array.length - 1;
 while(low <= high) {
 int mid = (low+high)/2;
 if (array[mid].compare(key) < 0) {
 // array[mid] < key
 low = mid+1;
 } else if (array[mid].compare(key) > 0) {
 // array[mid] > key
 high = mid-1;
 } else {
 // array[mid] == key
 return mid;
 }
 }
 return -1;
}

Data structures DIT960 Write your anonymous code, not your name _________________

3. Which array out of A, B and C represents a binary heap? Only one
answer is right.

0 1 2 3 4 5 6 7 8 9 10 11

▢ A = 1 4 54 8 45 76 65 44 11 47 57
0 1 2 3 4 5 6 7 8 9 10 11

▢ B = 1 8 45 13 43 47 44 65 23 76 57
0 1 2 3 4 5 6 7 8 9 10 11

▢ C = 1 13 47 23 65 54 67 45 32 76 57

Answer: A.

a) Write the heap out as a binary tree.

b) Add 46 to the heap, making sure to restore the heap invariant. How does
the array look now?

0 1 2 3 4 5 6 7 8 9 10 11

1 4 46 8 45 54 65 44 11 47 57 76

Data structures DIT960 Write your anonymous code, not your name _________________

4. Perform a selection sort on the following array. Your sort must be in-
place, so you must not use a temporary array.

0 1 2 3 4 5 6 7 8

53 71 32 67 90 23 44 88 42

Show how the array looks after each execution of the outer loop. Also
show which part of the array is sorted, for example by underlining it.

0 1 2 3 4 5 6 7 8

23 71 32 67 90 53 44 88 42

0 1 2 3 4 5 6 7 8

23 32 71 67 90 53 44 88 42

0 1 2 3 4 5 6 7 8

23 32 42 67 90 53 44 88 71

0 1 2 3 4 5 6 7 8

23 32 42 44 90 53 67 88 71

Data structures DIT960 Write your anonymous code, not your name _________________

0 1 2 3 4 5 6 7 8

23 32 42 44 53 90 67 88 71

0 1 2 3 4 5 6 7 8

23 32 42 44 53 67 90 88 71

0 1 2 3 4 5 6 7 8

23 32 42 44 53 67 71 88 90

0 1 2 3 4 5 6 7 8

23 32 42 44 53 67 71 88 90

0 1 2 3 4 5 6 7 8

23 32 42 44 53 67 71 88 90

Data structures DIT960 Write your anonymous code, not your name _________________

5. You are given the following AVL tree.

a) Mark each node with its AVL balance (left height minus right height).

-1

 1 0

 0 0 -1

 0 0 0

b) Insert 60 into the tree, and balance it to restore the invariant. Write down
the final tree.

60 becomes the left child of 62, and the root node now has a balance
of -2. It is a right-left tree, and a pair of rotations fixes the invariant.

Data structures DIT960 Write your anonymous code, not your name _________________

6. You are given the following weighted graph:

a) Perform Dijkstra's algorithm starting from node A. At each step the
algorithm visits a new node. In which order are the nodes visited, and
what is the distance to each of them? There are several possible orders to
visit the nodes in – you may choose any of them.

Node A D C B F G E H

Distance 0 1 2 3 3 6 8 9

You can visit B and F in either order.

Data structures DIT960 Write your anonymous code, not your name _________________

b) What is the shortest path to node H? List all the nodes along the way.

Distance 9 – A, C, F, G, E, H.

c) Use Prim's algorithm to construct a minimum spanning tree for the
graph, starting from whichever node you like. Draw the tree below.

Data structures DIT960 Write your anonymous code, not your name _________________

7. (hard) Your job is to implement a queue using a circular array. Your
queue should implement the interface Queue<E> shown below, which is
based on the Java queue interface.

public interface Queue<E> {
 // Inserts the specified element at the back of the queue.
 void add(E e);

 // Retrieves and removes an element from the front of the
 // queue, or returns null if the queue is empty.
 E poll();

 // Returns the number of elements in the queue.
 int size();
}

Note that:

• Your queue should not have any capacity restrictions.

• You should include a constructor for your queue.

• You may not use Java standard library functions in your
solution.

Hint: you may find it useful to define a separate method void resize()
that doubles the size of the array.

Answer on a separate sheet of paper.

Data structures DIT960 Write your anonymous code, not your name _________________

One possible answer:

class CircularQueue<E> implements Queue<E> {
 E[] array = (E[]) new Object[1];
 int size = 0;
 int low = 0:
 int high = 0;

 void add(E e) {
 if (size == array.length) resize();
 high = (high+1) % array.length;
 size = size+1;
 array[high] = e;
 }

 E poll() {
 if (size == 0) return null;
 E result = array[low]:
 low = (low+1) % array.length;
 size = size-1;
 return result;
 }

 void resize() {
 E[] newArray = (E[]) new Object(array.length * 2);
 for (int i = 0; i < size; i++) {
 newArray[i] = poll();
 array = newArray;
 low = 0;
 high = size-1;
 }

 int size() { return size; }
}

Data structures DIT960 Write your anonymous code, not your name _________________

8. (hard) Suppose we are given the following type of binary search trees in
Haskell:

data Tree a = Nil | Node a (Tree a) (Tree a)

a) Implement a function

greatest :: Ord a => Tree a -> a

that returns the greatest element in a non-empty binary search tree (in an
empty binary search tree it is allowed to crash).

The complexity of your function should be O(height of tree), i.e., O(log
n) for balanced trees, O(n) for unbalanced trees.

b) Write a function to delete an element. It will take two parameters, which
are the element to delete and the tree, and have the following type:

delete :: Ord a => a -> Tree a -> Tree a

The complexity of your function should be O(height of tree), i.e., O(log
n) for balanced trees, O(n) for unbalanced trees.

Hint: it will help to use greatest when implementing delete.

Answer on a separate sheet of paper.

Data structures DIT960 Write your anonymous code, not your name _________________

greatest :: Ord a => Tree a -> a
greatest (Node x _ Nil) = x
greatest (Node _ _ r) = greatest r

delete :: Ord a => a -> Tree a -> Tree a
delete x Nil = Nil
delete x (Node y l r)
 | x < y = Node y (delete x l) r
 | x > y = Node y l (delete x r)
-- otherwise, x == y
delete x (Node _ Nil r) = r
delete x (Node _ l r) =
 Node (greatest l) (delete (greatest l) l) r

Data structures DIT960 Write your anonymous code, not your name _________________

9. (extra hard, worth two hard questions)
Suppose we want to add an array-like
indexing operation to a binary tree. The idea
is that get(i) will return the ith element
that would be traversed in an in-order
traversal of the tree. For example, in the tree
to the right, get(0) would return h, get(1)
would return e, get(2) would return l,
get(3) would return l, get(4) would return
o, and so on.

Your job is to efficiently implement get. Your implementation should
have complexity O(height of tree), i.e. O(log n) for balanced trees, O(n)
for unbalanced trees. You will have to work out by yourself how to
implement it. If you get part of the way, write down what you've found:
you may get partial credit for it.

Here are some hints to help you:
• get should be a recursive function. It will either recurse into

the left or right child, or return the value of the current node.
First try to work out the base case: when is the current node
the one we are looking for?

• To implement get efficiently, you will need to know the size of
each node. Can you think how it helps to know the size of
each node? Think especially about the size of the left child.

• If you are stuck, take the tree above, label each node with its
size and index and look for a pattern – something that tells
you which child to recurse into and with what index. Look at
what happens with get(3), get(4) and get(5).

• Try writing down pseudocode once you have the basic idea.

You may choose either Java or Haskell. For Java, you should start from
the following tree datatype (which records the size of each node) and
skeleton implementation:

o

l

e

h l

o

w l

r d

Data structures DIT960 Write your anonymous code, not your name _________________

class Tree<E> {
 E value;
 int size; // The size of the node
 Tree<E> left, right;

 E get(int index) { /* your code goes here */ }
}

For Haskell, you should use the following datatype (which records the
size of each node) and skeleton implementation:

data Tree a = Nil | Node Int a (Tree a) (Tree a)
 -- The 'Int' field is the size of the node
get :: Int -> Tree a -> a
get index tree = -- your code goes here

You may find it useful to write a function size :: Tree a -> Int that
returns the size of any tree.

Answer on a separate sheet of paper.

Data structures DIT960 Write your anonymous code, not your name _________________

The idea is that the size of the left subtree tells us where to find the index
we are looking for:

• If the index is less than the size of the left subtree, the value we are
looking for is inside the left subtree (and we should recurse into the left
child)

• If the index is equal to the size of the left subtree, the current node is the
one we are looking for

• If the index is greater than the size of the left subtree, the value we are
looking for is inside the right subtree

Java implementation:

E get(int index) {
 int leftSize;
 if (left == null) leftSize = 0;
 else leftSize = left.size;

 if (index < leftSize)
 return left.get(index);
 else if (index == leftSize)
 return value;
 else
 return right.get(index - leftSize 1);–
}

Haskell implementation:

size :: Tree a -> Int
size Nil = 0
size (Node n _ _ _) = n

get :: Int -> Tree a -> a
get index (Node _ x l r)
 | index < size l = get index l

Data structures DIT960 Write your anonymous code, not your name _________________

 | index == size l = x
 | otherwise = get (index - size l - 1) r

http://xkcd.com/835/

http://xkcd.com/835/

	Exam
	Data structures DIT960

