

Two things on course website

Haskell compendium – describes lots of
data structures in Haskell
● Find under “Resources”

Last year's exam
● Find under “Exam”

Sets, maps
and binary search trees

(6.7 – 6.8, 18, 19.1 – 19.3)

Trees

A tree is a hierarchical data structure
● Each node can have several children but only has one parent
● The root has no parents; there is only one root

Example: directory hierarchy

Binary trees

We will look at binary trees, where each
node has at most two children

class Node<E> {
 E value;
 Node<E> left, right;
}

data Tree a
 = Node a (Tree a) (Tree a)
 | Nil

Can be null

(left) child
of hamster

parent of gorilla
ancestor of ape

root

leafsiblings

owlowl

hamsterhamster

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

left subtree
of owl

Terminology

descendant of
hamster

apeape

owlowl

lemurlemur

size 4

gorillagorilla

penguinpenguin

wolfwolf

apeape

Terminology
The depth of a node is the distance from the root
The height of a tree is the distance to the deepest leaf
The size of a tree is the number of nodes in it

depth 1
height 3

hamsterhamster

Tree traversal

Traversing a tree means visiting all its
nodes in some order

A traversal is an order to visit the nodes in

Four common traversals: preorder,
inorder, postorder, level-order

For each traversal, you can define an
iterator that traverses the nodes in that
order (see 18.4)

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

Preorder traversal

hamsterhamster

1

2

3

4

5

6

7

Visit root node, then left child, then right

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

Inorder traversal

hamsterhamster

5

3

2

1

4

6

7

Visit left child, then root node, then right

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

Postorder traversal

hamsterhamster

7

4

2

1

3

6

5

Visit left child, then right, then root node

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

Level-order traversal

hamsterhamster

1

2

4

7

5

3

6

Visit nodes left to right, top to bottom

In-order traversal – printing

void inorder(Node<E> node) {
 if (node == null) return;
 inorder(node.left);
 System.out.println(node.value);
 inorder(node.value);
}

But nicer to define an iterator!

Iterator<Node<E>> inorder(Node<E> node);

Level-order traversal is slightly trickier, and uses
a queue – see 18.4.4

Binary search trees

In a binary search tree (BST), every node
is greater than all its left descendants,
and less than all its right descendants

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

hamsterhamster

owlowl

lemurlemurgorillagorilla

penguinpenguin

wolfwolf

apeape

Sorting a binary search tree

hamsterhamster

5

3

2

1

4

6

7

If we do an inorder traversal of a BST, we
get its elements in sorted order!

Searching in a binary search tree

To search for target in a BST:
● If the target matches the root node's data, we've

found it
● If the target is less than the root node's data,

recursively search the left subtree
● If the target is greater than the root node's data,

recursively search the right subtree
● If the tree is empty, fail

A BST can be used to implement a set, or
a map from keys to values

Invariants

“Every node is greater than all its left
descendants, and less than all its right
descendants”: this is an invariant
● It holds of every binary search tree
● When using the BST, we can assume the invariant

holds
● But when updating the BST, we must make sure

to preserve the invariant: it should still hold
afterwards

Invariants

When designing a complex data
structure, the first thing you should
decide is the invariant!
● If there is an invariant and you don't know what it

is, you will probably end up with subtle bugs
● If you break the invariant, the program might not

crash, it might just go wrong in mysterious ways –
e.g., if you insert an item into the wrong place in a
BST, you just won't be able to find it later

Checking the invariant

Write a method boolean invariant() that checks whether
your data structure's invariant holds.

Then before and after every operation, write assert
invariant() - this will throw an error if the invariant
doesn't hold

This finds many tricky data structure bugs!

Almost all languages support assertions. Use them! There
is normally an option not to check assertions – in Java you
have to run with -ea to check them.

BST invariant (sketch)

boolean invariant() {
 return checkNode(root);
}
private boolean checkNode(Node<E> node) {
 if (node == null) return true;

 if (!checkNode(node.left)) return false;
 if (!checkNode(node.right)) return false;

 for (E x : allDataValues(node.left))
 if (x node.data) return false;≥
 for (E x : allDataValues(node.right))
 if (x node.data) return false;≤
 return true;
}

A bit of work to write, but worth it when it finds bugs!

BST invariant (Haskell)

invariant :: Ord a => Tree a Bool→
invariant Nil = True
invariant (Node x l r) =
 all (< x) (values l) && all (> x) (values r)

values Nil = []
values (Node x l r) = values l ++ [x] ++ values r

Inserting into a BST

To insert a value into a BST:
● Start by searching for the value
● But when you get to null (the empty tree), make a

node for the value and place it there

Deleting from a BST

To delete a value from a BST:
● Find the node and its parent
● If it has no children, just remove it from the tree

(by disconnecting it from its parent)
● If it has one child, replace the node with its child

(by making the node's parent point at the child)
● If it has two children...?

Deleting a node with one child

Deleting “is”, which has one child, “in” –
we connect “in” to is's parent “jack”

Deleting a node with two children

Replace the node with the biggest (rightmost) node
from its left subtree (or the smallest from the right
subtree) – there is no node between these two in
order, so we won't break the invariant

Deleting a node with two children

The rightmost node of the left subtree might have a
child! In that case, we connect that child where the
rightmost node was. Here, we replace “rat” with
“priest”, and move priest's left child “morn” where
“priest” was

Deleting a node with two children

Look at the left subtree and find the
rightmost (greatest) node

Delete that node as before (it can't have
two children because it's rightmost)

Replace the node we're deleting with that
rightmost node

Complexity of BST operations

A BST can be severely unbalanced
(when?) – then finding an element is O(n)

If it is balanced, the
complexity is O(log n)

General complexity is
O(height of tree)

Balanced binary search trees
(later) make sure the tree is balanced so
complexity is O(log n)

Set ADT

The set ADT looks like this in Java:

interface Set<E> extends Collection<E> { }

What!

Well, Collection already contains all the set
operations: add, remove, member, etc.

The difference between Set and Collection: if
you add duplicate elements to a Set, they're
ignored – a Collection might let you add
duplicates

Map ADT

A map is a collection of key/value pairs.

Important methods of Map<K,V>:
boolean containsKey(K key);
V get(K key);
void put(K key, V value);
V remove(K key);
Set<K> keySet();
Collection<V> valueSet();
Set<Entry<K,V>> entrySet();
// Entry<K,V> has methods
// getKey, getValue, setValue

Pretty well every language has something similar.

Summary

Binary trees
● Hierarchical data structure
● Much standard terminology
● Traversals: preorder, inorder, postorder, level-order

Binary search trees
● O(log n) insert, delete, lookup if balanced
● We will see later how to keep a binary search tree balanced
● Java code in book (chapter 19.1), Haskell code in compendium

(file BinarySearchTree.hs)

Data structure invariants

Sets and maps

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

