
  

Two things on course website

Haskell compendium – describes lots of 
data structures in Haskell
● Find under “Resources”

Last year's exam
● Find under “Exam”



  

Sets, maps
and binary search trees

(6.7 – 6.8, 18, 19.1 – 19.3)



  

Trees

A tree is a hierarchical data structure
● Each node can have several children but only has one parent
● The root has no parents; there is only one root

Example: directory hierarchy



  

Binary trees

We will look at binary trees, where each 
node has at most two children

class Node<E> {
  E value;
  Node<E> left, right;
}

data Tree a
  = Node a (Tree a) (Tree a)
  | Nil

Can be null
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Terminology
The depth of a node is the distance from the root
The height of a tree is the distance to the deepest leaf
The size of a tree is the number of nodes in it

depth 1
height 3

hamsterhamster



  

Tree traversal

Traversing a tree means visiting all its 
nodes in some order

A traversal is an order to visit the nodes in

Four common traversals: preorder, 
inorder, postorder, level-order

For each traversal, you can define an 
iterator that traverses the nodes in that 
order (see 18.4)
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Visit root node, then left child, then right
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Inorder traversal
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Postorder traversal
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Level-order traversal
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In-order traversal – printing

void inorder(Node<E> node) {
  if (node == null) return;
  inorder(node.left);
  System.out.println(node.value);
  inorder(node.value);
}

But nicer to define an iterator!

Iterator<Node<E>> inorder(Node<E> node);

Level-order traversal is slightly trickier, and uses 
a queue – see 18.4.4



  

Binary search trees

In a binary search tree (BST), every node 
is greater than all its left descendants, 
and less than all its right descendants
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Sorting a binary search tree
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If we do an inorder traversal of a BST, we 
get its elements in sorted order!



  

Searching in a binary search tree

To search for target in a BST:
● If the target matches the root node's data, we've 

found it
● If the target is less than the root node's data, 

recursively search the left subtree
● If the target is greater than the root node's data, 

recursively search the right subtree
● If the tree is empty, fail

A BST can be used to implement a set, or 
a map from keys to values



  

Invariants

“Every node is greater than all its left 
descendants, and less than all its right 
descendants”: this is an invariant
● It holds of every binary search tree
● When using the BST, we can assume the invariant 

holds
● But when updating the BST, we must make sure 

to preserve the invariant: it should still hold 
afterwards



  

Invariants

When designing a complex data 
structure, the first thing you should 
decide is the invariant!
● If there is an invariant and you don't know what it 

is, you will probably end up with subtle bugs
● If you break the invariant, the program might not 

crash, it might just go wrong in mysterious ways – 
e.g., if you insert an item into the wrong place in a 
BST, you just won't be able to find it later



  

Checking the invariant

Write a method boolean invariant() that checks whether 
your data structure's invariant holds.

Then before and after every operation, write assert 
invariant() - this will throw an error if the invariant 
doesn't hold

This finds many tricky data structure bugs!

Almost all languages support assertions. Use them! There 
is normally an option not to check assertions – in Java you 
have to run with -ea to check them.



  

BST invariant (sketch)

boolean invariant() {
  return checkNode(root);
}
private boolean checkNode(Node<E> node) {
  if (node == null) return true;

  if (!checkNode(node.left)) return false;
  if (!checkNode(node.right)) return false;

  for (E x : allDataValues(node.left))
    if (x  node.data) return false;≥
  for (E x : allDataValues(node.right))
    if (x  node.data) return false;≤
  return true;
}

A bit of work to write, but worth it when it finds bugs!



  

BST invariant (Haskell)

invariant :: Ord a => Tree a  Bool→
invariant Nil = True
invariant (Node x l r) =
  all (< x) (values l) && all (> x) (values r)

values Nil = []
values (Node x l r) = values l ++ [x] ++ values r



  

Inserting into a BST

To insert a value into a BST:
● Start by searching for the value
● But when you get to null (the empty tree), make a 

node for the value and place it there



  

Deleting from a BST

To delete a value from a BST:
● Find the node and its parent
● If it has no children, just remove it from the tree 

(by disconnecting it from its parent)
● If it has one child, replace the node with its child 

(by making the node's parent point at the child) 
● If it has two children...?



  

Deleting a node with one child

Deleting “is”, which has one child, “in” – 
we connect “in” to is's parent “jack”



  

Deleting a node with two children

Replace the node with the biggest (rightmost) node 
from its left subtree (or the smallest from the right 
subtree) – there is no node between these two in 
order, so we won't break the invariant



  

Deleting a node with two children

The rightmost node of the left subtree might have a 
child! In that case, we connect that child where the 
rightmost node was. Here, we replace “rat” with 
“priest”, and move priest's left child “morn” where 
“priest” was



  

Deleting a node with two children

Look at the left subtree and find the 
rightmost (greatest) node

Delete that node as before (it can't have 
two children because it's rightmost)

Replace the node we're deleting with that 
rightmost node



  

Complexity of BST operations

A BST can be severely unbalanced 
(when?) – then finding an element is O(n)

If it is balanced, the
complexity is O(log n)

General complexity is
O(height of tree)

Balanced binary search trees
(later) make sure the tree is balanced so 
complexity is O(log n)



  

Set ADT

The set ADT looks like this in Java:

interface Set<E> extends Collection<E> { }

What!

Well, Collection already contains all the set 
operations: add, remove, member, etc.

The difference between Set and Collection: if 
you add duplicate elements to a Set, they're 
ignored – a Collection might let you add 
duplicates



  

Map ADT

A map is a collection of key/value pairs.

Important methods of Map<K,V>:
boolean containsKey(K key);
V get(K key);
void put(K key, V value);
V remove(K key);
Set<K> keySet();
Collection<V> valueSet();
Set<Entry<K,V>> entrySet();
// Entry<K,V> has methods
// getKey, getValue, setValue

Pretty well every language has something similar.



  

Summary

Binary trees
● Hierarchical data structure
● Much standard terminology
● Traversals: preorder, inorder, postorder, level-order

Binary search trees
● O(log n) insert, delete, lookup if balanced
● We will see later how to keep a binary search tree balanced
● Java code in book (chapter 19.1), Haskell code in compendium 

(file BinarySearchTree.hs)

Data structure invariants

Sets and maps
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