Data Structures

Introduction



A data structure
is any way of organising the data in
your program



Data structures

Any data structure also comes with
certain operations that it supports

e Arrays: ali] (get), a[i] = x (set)
 Haskell lists: cons, head, tail
e Maps: get, set, insert, delete, ...

« Many many more



Why do we need data structures?

* You can program anything without using fancy
data structures

e ...butit might run very slowly

 You need to know about data structures to
write efficient programs

« Might be the difference between a program
finishing instantly and taking 1000 years!



This course

* How to design data structures

e [ectures and exercises

e How to reason about their performance

e [ectures and exercises

* How to use them in programming

e [Labs and exercises



This course

» Lecturer: Nick Smallbone (me)

 nicsma@chalmers.se, room 5463

 Assistants: Staffan Bjornesjo and
Bartolomeus Jankowski

» Google group - please sign up!
 All info on the website!



Registration

“This semester you have to register online
in LPW at the Student portal. The
registration is obligatory in order to attend
the course.

Note that you need to register yourself on
the course the same day as the first lecture
otherwise you will lose your place.”


mailto:nicsma@chalmers.se

Organisation

 Lectures twice a week: Wednesday 13-
15, Friday 13-15 (all in EL41)

e Labs/exercises three times a week:
Tuesday 13-15, Tuesday 15-17, Friday
10-12 (all in 3354+3358)

e Exam at end of course (30t May 14-18)



L.abs

e Four labs and one hand-in

 Firstlab: phone book. Deadline end of week 2

e Do them in pairs (ask me if you want to
do them alone)

e Must pass labs and exam to pass the
course



Book

« Mark Weiss: Data
Structures and
Problem Solving
Using Java, 4t ed.

 Order from e.g. - -
Adlibris (6 50 kI') Data Structures & Problem

Solving Using Java™

Fourth Edition

Mark Allen Weiss

l’t’:!'.'. "t.l

ﬁ F‘E ARSDN
i3
% 1




Reading a file

String result = “”;
String line = in.readlLine();
while(line != null) {
result += line + "\n";
Line = in.readlLine();

J

* On a big file, takes an extremely long
time

« Appending many strings together is
slow



Reading a file, take 2

StringBuilder result = new StringBuilder();
String line = in.readlLine();
while(line != null) {

result.append(line + “\n”);

Line = in.readLine();

b
e Runs quickly even on big files

 StringBuilder is a data structure that
supports efficiently appending strings



Arrays

e The most basic data structure

- afi

- afi

: read index i of array a

= x: write index i of array a

e new int|10]: create a new array

» The size of an array is fixed once it's
created



Dynamic arrays

e Sometimes you don't know how big an
array should be in advance

* A dynamic array provides an operation
to add an element to the end of an array
(changing its size)



One attempt

To add an element to array, create a
new array with one more element and
copy everything there



5 3 4 2 +38

1. Make a new array

2. Copy the old array there

5 3 4 2

3. Add the new element

5 3 4 2 8




Implementation

Object[] array = {};

void add(Object x) {

Object[] newArray = new Object[array.length + 1];

for (int 1 = 0; 1 < array.length; i++)
newArrayli] = arraylil];

newArraylarray.length] = x;

array = newArray;



Performance

e Each time you add an element to array,
you copy array. length elements

o Start with an empty array, and add n
elements:
 First add copies nothing, second add copies

one element, third add copies two elements,
and so on

e l1+2+..+(n-1)=n(n-1)/2



n(n-1)/2

e Suppose copying one element takes
one microsecond.

e n = 10000: 50 million elements copied!
50 seconds.

e n = one million: 500 billion elements
copied!
Nearly a week!



Attempt two

When copying the array, increase its
size by 10 elements instead of one, and

only copy everything when the array
gets full



Add an element:
5 3 4 2 8 7

3

Add an element:
5 3 4 2 8 7

3 2



Implementation

Object[] array = {3};
int size = 0Q;

void add(Object x) {
if (array.length == size) {
Object[] newArray = new Object[array.length + 10];
for (int 1 = 0; 1 < array.length; 1i++)
newArrayli] = arraylil];
array = newArray;
3
arraylsize] = x;
Size++;

3



Performance

» Each time you add 10 elements to
array, you copy array. length
elements

o Start with an empty array, and add 10n
elements:
 First ten adds copy no elements, second ten

adds copy ten elements, third ten adds copy
twenty elements, and so on

¢ 10+20+...+10(n-1)=10(1 +2 +... +n-1) =
10n(n-1) /2 =5n(n-1)



Performance

e With 10n adds, we copy 5n(n-1)
elements.

e To get the number of copies for n adds,
substitute n/10 for n, to get 5(n/10)
(n/10-1), or about n(n-1)/20.

e Can handle 10 times as large inputs -
but that's all!



Attempt three

Whenever the array gets full, instead ot
adding 10 elements, double its size

Objectl[] array = {null};
int size = 0;

void add(Object x) {
if (array.length == size) {
Object[] newArray = new Objectlarray.length * 2];
for (int 1 = 0; 1 < array.length; 1++)
newArrayli] = arrayl[il;
array = newArray;
J
arrayl[size] = x;
Size++;



Performance

» Each time you double the size of array, you copy
array.length elements
o Start with an empty array, and add 2+1 elements:

« After 1 add array is full; second add copies 1 element
o After 2 adds array is full; third add copies 2 elements
 After 4 adds array is full; fifth add copies 4 elements

* After 2" adds array is full; 2"+1th add copies 2» elements
* 1+2+4+8+..+20=20+1_1 copies



Performance

* For 27+1 adds, we copy 2n+1- 1
elements. This is the worst case.

e 2n+1_1 =2 x (2041)-3

* For n adds, we will copy at most 2n - 3
elements



1+2+4+8+...+2" =2"-1? Why?

Well, letS=1+2+4+8 +... + 201,
S02S=2+4+8+... +2n.

Now, calculate 2S - S. The terms 2, 4, 8,
..., 2n-1 cancel out, leaving 2» - 1.

But25-§=S8.505=2n-1.



Performance - a graph

le+1l I | I
Increase size by 1 =——
Increase size by 10 =
Double size
8e+10 =
be+10 =
de+10 =
2e+10 =

0 200000 400000 600000 800000 le+06



le+09

8e+08

6e+08

4e+08

2e+08

Zoom in!

200000

400000

I I
Increase size by 1 =——
Increase size by 10 =
Double size

600000 800000 le+06



Zoom in!

le+08 I

I I
Increase size by 1 =——
Increase size by 10 =
Double size

8e+07

be+07

4e+07

2e+07

0 200000 400000 600000 800000 le+06



The right use of data structures can
get you such speedups in your
programs!



ArrayList<E>

class ArraylList<kE> {
public ArrayList();
public E get(int 1);
public void set(int 1, E e);
public boolean add(E e);
public int size();
// plus much more




Back to reading a file

Remember our slow program:

String result = “7;

)

String line = in.readlLine();
while(line != null) {
result = result + line + "\n";
Line = in.readlLine();

J
The culprit is the line

result = result + line + "\n";

It's just like our very slow dynamic
array!



Back to reading a file

Remember our fast program:

StringBuffer result = new StringBuffer();

String line = in.readlLine();

while(line != null) {
result.append(line + “\n”);
Line = in.readlLine();

J
StringBuffer uses a dynamic array!



(A toy implementation of)
StringBultfer

class StringBuffer {
ArrayList<Character> list =
new ArraylList<Character>;

void append(String s) {
for (int 1 = 0; 1 < s.length; 1i++)
list.add(s.charAt(1));
J

String toString() {
char[] string = new char[list.size()];
for (int 1 = 0; 1 < list.size(); 1++)
string[1] = list.get(1);
return new String(string);
J
J



Why can't String use StringBuffer?

Couldn't String also use a dynamic
array when you append to it? Why does
it need to be slow?

Answer: String is immutable - you can't
change a string after you've created it.
sl + s2 returns a new string, so must
allocate a new array.



Tradeotfts, tradeoftts

o String and StringBuffer have ditferent
strengths and weaknesses:
 StringButffer has efficient append, String does
not

e But String is immutable. We can't use
StringBuffer instead of String everywhere
because when someone passes you a string you
want to know that it won't change

e All data structures make different
tradeofts



Next lecture

« How to reason about the performance
of data structures and algorithms

« How to argue that an algorithm is
correct

 Lab session on Friday! (You can already
start.)



	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

