Information Security for the future smart grid

Göran Ericsson, *PhD* Head of R&D

Lecture Chalmers 2013-04-10

Agenda

- > What is Svenska Kraftnät (SvK, Swedish national grid)
- > International/national perspectives
- > R&D at SvK
- > Cyber security
- > Challenges

> Discussion (10-15 min)

The National Grid > Transmission lines: 15 000 km > 220 - 400 kV > HVDC Critical transfer > No. of switching stations: 135 section no. 1 > National Control Centre: Critical transfer section no. 2 Sundbyberg Critical transfer section no. 4

Before de-regulation 1996

- > National, regional and local levels
- > Statens Vattenfallsverk operated on all levels
- > Cooperation (not competetion) between companies, to optimallay operate
- > SCADA/EMS-systems: Proprietary, not open.

After de-regulation 1996

- Statens Vattenfallsverk was split: Affärsverket Svenska Kraftnät (Swedish National Grid)+ Vattenfall AB
- Both SvK and VAB started to separate their structures for Operation/Control
 - > SvK: KRASS (KRAftSystemStyrning)
 - > VAB: DRISS (DRIftStödSystem)

National – Regional and local networks

- > National grid
 - > 400 and 220 kV
 - > Svenska Kraftnät
- > Regional networks
 - > 40 130 kV
 - > ~ 40 networks
 - > 10 companies
- > Local networks
 - > < 40 kV
 - > ~ 310 networks
 - > ~200 companies

System Operator Responsibility

- Power system in balance: 50 Hz
 - Handles the national momentary balance
 - > Manages bottlenecks
 - > Distributes costs

Svenska Kraftnät

- Power line highways + connections to neighboring countries
- System responsible authority

Also: Nordic perspectives

- Nordic countries have lot of common interests
- Co-funding of projects

Large Projects (put into operation)

- 01 Stockholms Ström (2010-2020)
- 02 SydVästlänken (2014)
- 03 Sydvästlänken (2018)
- 04 NordBalt (2015/2016)
- 05 Ekhyddan–Barkeryd (2016)
- 06 FennoSkan 2 (2011)
- 07 Gotlandsförbindelsen (2017)

Requests for connecting wind power

Total ≈ 36 000 MW

(corresponds to ≈90 TWh) Sweden total 150 TWh/y

Q: Which projects will be realized?

European Collaboration – ENTSO-E

41 TSOs from 34 countries

- Founded on 19 Dec 2008 and fully operational since July 2009
- A trans-European network
 - 532 million citizens served
 - 880 GW generation
 - 305,000 Km of transmission lines
 - 3,200 TWh/year demand
 - 380 TWh/year exchanges

European Network for Transmission System operators – Electricity: ENTSO-E

- > ENTSO-E committees (<u>www.entsoe.eu</u>):
 - > System Operation Committee (SOC)
 - > Market Committee (MC)
 - > System Development Committee (SDC)
 - > R&D Committee (RDC)
 - > R&D Plan

Broad scope

- > Energy. Power supply
- > Critical for the society
- > Environment
- > Technical issues
- > Market issues
- > Swedish, Nordic, International
- > Cyber security: Devil is in the details. Small issues are big and strategically important!

Dam – Three Gorges China

R&D Svenska Kraftnät

- > R&D Plan 2013-2015. Updated yearly.
 - > System aspects, Operation, robustness, Security, Environment, IT and telecommunications, Network technology, Maintenance of the grid, Energy market, Maintenance knowledge and education. Dam safety.
 - > E.g. Wind power connection research, Support to PhD & MSc projects
- > 3 MEuro / year
 - > R&D companies, universities, consultants,
- > Also: 0,5 MEuro/y electricity preparedness
 - > Dam safety. SCADA Security.

Stockholm Royal Seaport – A world class sustainable city, with a Smart Grid as the enabler

Objectives

- > 2030: fossil free
- > 10 000 apartments30 000 office places
- > 30 % in-house renewables
- > Demand Side Participation

Smart Grid components: Integrated Active House and Electric Vehicle

Benefits

> Active 'prosumer' benefits from most favorable spot price

> Peak load shaving by local production, storage and time shift of consumption

> Overall reduction of energy consumption by increased consumer awareness

Cyber Security

> Digital security (not yet mature)

Versus

> Physical security (well established)

Information Security acc. to Wikipedia

Information security (sometimes shortened to InfoSec) is the practice of *defending information* from unauthorized access, use, disclosure, disruption, modification, perusal, inspection, recording or destruction. It is a general term that can be used regardless of the form the data may take (electronic, physical, etc)

IT Security acc. to Wikipedia

- > Sometimes referred to as <u>computer security</u>,
- > (most often some form of computer system). It is worthwhile to note that a <u>computer</u> does not necessarily mean a home desktop. A <u>computer</u> is any device with a <u>processor</u> and some memory (even a calculator). IT security specialists are almost always found in any major enterprise/establishment due to the nature and value of the data within larger businesses. They are responsible for keeping all of the <u>technology</u> within the company secure from malicious cyber attacks that often attempt to breach into critical private information or gain control of the internal systems

Comparison

- > Information security: Routines, policies, knowledge "softer"
- > IT-security: technically firewalls, log-in keys- "harder"

- > But: Small technical details may have strategic importance:
 - > Lost USB-sticks, computers, ...

Smart Grids Definitions

> "The application of digital technology to the electric power infrastructure"

>and many others

Seven key EU technology challenges for the next 10 years to meet the 2020 targets, the SET-plan:

- 1. Make second generation **biofuels** competitive alternatives to fossil fuels, while respecting the sustainability of their production;
- 2. Enable commercial use of technologies for **CO2 capture**, transport and storage through demonstration at industrial scale, including whole system efficiency and advanced research;
- 3. Double the power generation capacity of the largest **wind** turbines, with offshore wind as the lead application;
- 4. Demonstrate commercial readiness of large-scale **Photovoltaic** (PV) and Concentrated Solar Power;
- 5. Enable a single, **smart European electricity grid** able to accommodate the massive integration of renewable and decentralised energy sources;
- 6. Bring to mass market more **efficient energy** conversion and end-use devices and systems, in buildings, transport and industry, such as poly-generation and fuel cells;
- 7. Maintain competitiveness in **fission technologies**, together with long-term waste management solutions;

Data communication

> "Enabler" for operation/control

Increase in communication capabilility

From

> Narrowband walking paths

То

> Broadband 7-lane highways

Development of Industrial Control Systems 1(2)

1. Islands of operation

2. Interconnected

Development of Industrial Control Systems 2(2)

4. Today. Full integration system structure

SCADA Supervisory Control And Data Acquisition

Industrial Processes

- > Power Network
- > Power Production
- > Telecommunication network
- > Water
- > Transport
- >

Access points to SCADA-system Threat and possibilities

SCADA Supervisory Control And Data Acquisition

- > Increasingly accessible via Internet
- > Same technical solution as common office IT systems
- > Process control system integrated with office systemsIntegrering med adminstrativa IT-system
- Same vulnerabilities for SCADA systems as for office IT! What to do?
- > Disturbances can have severe impact on critical infrastructutes
 > Power, water, gas, transport
- > "CIP = Critical Infrastructure Protection"
- > "CIIP = Critical Information Infrastructure Protection"

Challanges

Interesting Topics for the Smart Grid

- SCADA system security, incl. evolution and legacy systems and environments
- AMI (Automatic Meter Infrastructure) security, incl. larger attack surface and switch between back-end (meters, earlier) to front-end (e-meters, now+future)

- Risks implied vs benefits to expect from "smartness" and balance between the two
- Risks implied by remote, network-communicated operations (+ to use Internet or not to use it)
- > Privacy issues
- > Can regulations imply increased security?
- > What is expected from utilities vs other actors

Smart meters

- > Technical possibilities. Broadband => faster, bulky
- > From the households:
 - > collect kWh-data, basis for billing
- > To the households
 - > Price information
 - > **Controls** opens up new cyber security issues
- » "Which party will be responsible when, by mistake or by intentional digital tampering, a household is disconnected for two weeks, and that the owner of the house gets damages by destroyed food or water leakage, when he is away on two weeks of vacation?"
 - > The owner? The utility? Who?
- > These issues are clearly related to cyber security and they must be raised within the electric power arena.

Delicate issues!

- > "AIC" rather than "CIA" in electric arena
 - > Confidentiality ("Sekretess")
 - > Integrity ("Riktighet")
 - > Availability ("Tillgänglighet")

=> Low priority for Confidentiality - Risk for Intrusion?

> SCADA Security

> (Still) Enormous need for education awareness!

Smart Grid System – A way towards the use of wind power

- > 20-30 TWh out of 150 TWh may be based on wind power within 10 years
- > Wind power not marginal for Svenska Kraftnät
- > Wind intermittent. How maintain electrical balance?

Research issues

- > Develop models whoch can be tested in lab and reality
- > Methods to measure and design secure control systems E.g.: How secure is an Industrial Control Systems structure ?
- > System architectures which include security from the beginning.
- > Analysis of critical infrastructurer (SCADA system)
- > How incorportare security into an existing "legacy system"?
- > ...

Concluding remarks

- > Swedish -> Nordic -> European R&D issues
- > Climate goals => Introduction of renewables =>change in power transmission
- > Smart Grid -> Smart System
- > From islands-of-automation to fully integrated

Concluding remarks

- > Openness. Communication capabilities
- > Digital/Cyber security
 - > New issue for the utility
 - > Essential issue in a smart grid cirtical infrastructure
- > Proprietary -> Standard and 3rd party software
- > Openness creates possibilities, which we want to have
- > Openness creates new problems to solve: digital security

> SCADA security: important for society criticial infrastructure

power, water, transport, ...

- > Include security from the beginning
- > R&D an important success factor!

Recommendations

- > Power utilities / customers address security from the beginning!
- > Vendors be pro-active! Include security in solutions from the <u>beginning</u>!

Know incidents

- > Spilling water utility Australia 48 times. Radio controlled.
- > Stuxnet Siemens PLC 24 months
- > Kan inverkan i utländska kärnkraftverk uteslutas?

Reflection

> IT-incidents – nothing you talk about– embarracing.

Thanks for your attention! Questions?

