
Parallel Functional Programming
Lecture 8

Data Parallelism I

Mary Sheeran

http://www.cse.chalmers.se/edu/course/pfp

Data parallelism

Introduce parallel data structures and make

 operations on them parallel

Often data parallel arrays

Canonical example : NESL (NESted-parallel Language)

(Blelloch)

NESL

concise (good for specification, prototyping)

allows programming in familiar style (but still gives parallelism)

allows nested parallelism (see later)

associated language-based cost model

gave decent speedups on wide-vector parallel machines of the day

Hugely influential!

http://www.cs.cmu.edu/~scandal/nesl.html

http://www.cs.cmu.edu/~scandal/nesl.html

NESL

Parallelism without concurrency!

Completely deterministic (modulo floating point noise)

No threads, processes, locks, channels, messages, monitors,
barriers, or even futures, at source level

Based on Blelloch’s thesis work: Vector Models for Data-Parallel
Computing, MIT Press 1990

http://www.cs.cmu.edu/~blelloch/papers/Ble90.pdf
http://www.cs.cmu.edu/~blelloch/papers/Ble90.pdf
http://www.cs.cmu.edu/~blelloch/papers/Ble90.pdf
http://www.cs.cmu.edu/~blelloch/papers/Ble90.pdf
http://www.cs.cmu.edu/~blelloch/papers/Ble90.pdf
http://www.cs.cmu.edu/~blelloch/papers/Ble90.pdf

NESL

NESL is a sugared typed lambda calculus with a set
of array primitives and an explicit parallel map over
arrays

To be useful for analyzing parallel algorithms, NESL was
designed with rules for calculating the work (the total
number of operations executed) and depth (the longest
chain of sequential dependence) of a computation.

Quotes are from ICFP’96 paper

Quotes are from ICFP’96 paper This paper adds the accounting of costs to the semantics
of the language and proves a mapping of those costs into

running time / space on concrete machine models

Image: © Thinking Machines Corporation, 1986.
Photo: Steve Grohe.

http://www.venturenavigator.co.uk/content/152

Connection Machine

First commercial massively
parallel machine

65k processors

 can see CM-1 and CM-5
(from 1993) at Computer
 History Museum, Mountain
 View

http://www.venturenavigator.co.uk/content/152

NESL array operations

function factorial(n) =

 if (n <= 1) then 1

 else n*factorial(n-1);

{factorial(i) : i in [3, 1, 7]};

apply to each = parallel map (works with user-defined functions
 => load balancing)

list comprehension style notation

Online interpreter 

The result of:

function factorial(n) =

 if (n <= 1) then 1

 else n*factorial(n-1);

{factorial(i) : i in [3, 1, 7]};

factorial = fn : int -> int

it = [6, 1, 5040] : [int]

Bye.

is:

http://www.cs.cmu.edu/~scandal/nesl/tutorial2.html

http://www.cs.cmu.edu/~scandal/nesl/tutorial2.html

apply to each (multiple sequencs)

The result of:

{a + b : a in [3, -4, -9]; b in [1, 2, 3]};

is:

it = [4, -2, -6] : [int]

Bye.

apply to each (multiple sequencs)

The result of:

{a + b : a in [3, -4, -9]; b in [1, 2, 3]};

is:

it = [4, -2, -6] : [int]

Bye.

Qualifiers in comprehensions are zipping rather than nested as in Haskell
Prelude> [a + b | a <- [3,-4,-9], b <- [1,2,3]]
[4,5,6,-3,-2,-1,-8,-7,-6]

Filtering too

The result of:

{a * a : a in [3, -4, -9, 5] | a > 0};

is:

 it = [9, 25] : [int]

Bye

scan (Haskell first)

*Main> scanl1 (+) [1..10]

[1,3,6,10,15,21,28,36,45,55]

Main> scanl1 () [1..10]

[1,2,6,24,120,720,5040,40320,362880,3628800]

 1 2 3 4 5 6 7 8 9 10

 1 2 3 4 5 6 7 8 9 10

 3

 1 2 3 4 5 6 7 8 9 10

 3

 6

 1 2 3 4 5 6 7 8 9 10

 3

 6

 10

 1 2 3 4 5 6 7 8 9 10

 3

 6

 10

 15

 .

 .

 .

 1 2 3 4 5 6 7 8 9 10

 3

 6

 10

 15

 .

 .

 .

time

scan diagram

Brent Kung (’79)

Brent Kung

forward tree + several reverse trees

recursive decomposition

• (
Si

j
 = ai * ai+1 * . . . * aj

indices from 1 here

recursive decomposition

• divdivide
Si

j
 = ai * ai+1 * . . . * aj

one recursive call on n/2
inputs

divide
conquer
combine

prescan

scan ”shifted right by one”

prescan of

[a1 , a2, ,a3, ,a4, . . . , an]

is

[I, a1, a1 * a2, a1 * a2 * a3, … , a1 * … * an-1]

identity element

scan from prescan

easy (constant time)

[I, a1, a1 * a2, a1 * a2 * a3, … , a1 * … * an-1] an

[a1, a1 * a2, a1 * a2 * a3, … , a1 * … * an-1 ,a1 * … * an]

*

the power of scan

Blelloch pointed out that once you have scan
you can do LOTS of interesting algorithms, inc.

To lexically compare strings of characters. For example, to determine that "strategy"

should appear before "stratification" in a dictionary
 To evaluate polynomials
 To solve recurrences. For example, to solve the recurrences

 To implement radix sort
 To implement quicksort
 To solve tridiagonal linear systems
 To delete marked elements from an array
 To dynamically allocate processors
 To perform lexical analysis. For example, to parse a program into tokens
 and many more
http://www.cs.cmu.edu/~blelloch/papers/Ble93.pdf

xi = ai xi-1 + bi xi-2 and xi = ai + bi / xi-1

http://www.cs.cmu.edu/~blelloch/papers/Ble93.pdf

prescan in NESL

function scan_op(op,identity,a) =

if #a == 1 then [identity]

else

 let e = even_elts(a);

 o = odd_elts(a);

 s = scan_op(op,identity,{op(e,o): e in e; o in o})

 in interleave(s,{op(s,e): s in s; e in e});

function scan_op(op,identity,a) =

if #a == 1 then [identity]

else

 let e = even_elts(a);

 o = odd_elts(a);

 s = scan_op(op,identity,{op(e,o): e in e; o in o})

 in interleave(s,{op(s,e): s in s; e in e});

prescan in NESL

zipWith op e o
zipWith op s e

prescan

function scan_op(op,identity,a) =

if #a == 1 then [identity]

else

 let e = even_elts(a);

 o = odd_elts(a);

 s = scan_op(op,identity,{op(e,o): e in e; o in o})

 in interleave(s,{op(s,e): s in s; e in e});

scan_op('+, 0, [2, 8, 3, -4, 1, 9, -2, 7]);

is:

scan_op = fn : ((b, b) -> b, b, [b]) -> [b] :: (a in any; b in any)

it = [0, 2, 10, 13, 9, 10, 19, 17] : [int]

prescan

function scan_op(op,identity,a) =

if #a == 1 then [identity]

else

 let e = even_elts(a);

 o = odd_elts(a);

 s = scan_op(op,identity,{op(e,o): e in e; o in o})

 in interleave(s,{op(s,e): s in s; e in e});

scan_op(max, 0, [2, 8, 3, -4, 1, 9, -2, 7]);

is:

scan_op = fn : ((b, b) -> b, b, [b]) -> [b] :: (a in any; b in any)

it = [0, 2, 8, 8, 8, 8, 9, 9] : [int]

Exercise

Try to write scan (as distinct from prescan)

Call it oscan (as scan is built in (gives both prescan list and

 the final element))

Note that apply-to-each on two sequences demands that the two
sequences have equal length (unlike zipWith)

Assume first that the sequence has length a power of two

Type your answer into one of the boxes on

http://www.cs.cmu.edu/~scandal/nesl/tutorial2.html

http://www.cs.cmu.edu/~scandal/nesl/tutorial2.html

Outline of one possible solution

function init is = take(is,#is-1);

function tail is = drop(is,1);

function oscan(op,v) =

 if #v == 1 then v

 else let es = even_elts(v);

 os = odd_elts(v);

 is = oscan(…);

 us = …

 in interleave … ;

Outline of one possible solution

function init is = take(is,#is-1);

function tail is = drop(is,1);

function oscan(op,v) =

 if #v == 1 then v

 else let es = even_elts(v);

 os = odd_elts(v);

 is = oscan(…);

 us = …

 in interleave … ;

interleave([1,2,3],[4,5,6]);

it = [1, 4, 2, 5, 3, 6] : [int]

interleave([1,2,3],[4,5]);

it = [1, 4, 2, 5, 3] : [int]

interleave([1,2,3],[4]);

RUNTIME ERROR: Length mismatch for function INTERLEAVE.

Batcher’s bitonic merge

function bitonic_sort(a) =

if (#a == 1) then a

else

 let

 bot = subseq(a,0,#a/2);

 top = subseq(a,#a/2,#a);

 mins = {min(bot,top):bot;top};

 maxs = {max(bot,top):bot;top};

 in flatten({bitonic_sort(x) : x in [mins,maxs]});

bitonic_sort (merger)

min

max

bitonic_sort (merger)

bot

bot

top

min

max

bitonic sort

function batcher_sort(a) =

if (#a == 1) then a

else

 let b = {batcher_sort(x) : x in bottop(a)};

 in bitonic_sort(b[0]++reverse(b[1]));

bitonic sort

sort

sort

rev

bitonic
merge

bitonic sort

sort

sort

rev

bitonic
merge

For some fun with sorting networks in Obsidian, see
http://www.cse.chalmers.se/~joels/writing/expressive.pdf

http://www.cse.chalmers.se/~joels/writing/expressive.pdf

parentheses matching

function parentheses_match(string) =
let
 depth = plus_scan({if c==`(then 1 else -1 : c in string});
 depth = {d + (if c==`(then 1 else 0): c in string; d in depth};
 rnk = permute([0:#string], rank(depth));
 ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);

For each index, return the index of the matching parenthesis

 one scan, a map, a zipWith, two permutes and an interleave,
also rank and odd_elts and even_elts

parentheses matching

function parentheses_match(string) =
let
 depth = plus_scan({if c==`(then 1 else -1 : c in string});
 depth = {d + (if c==`(then 1 else 0): c in string; d in depth};
 rnk = permute([0:#string], rank(depth));
 ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);

For each index, return the index of the matching parenthesis

 one scan, a map, a zipWith, two permutes and an interleave,
also rank and odd_elts and even_elts

permute([7,8,9],[2,1,0]);
permute([7,8,9],[1,2,0]);

it = [9, 8, 7] : [int]

it = [9, 7, 8] : [int]

parentheses matching

function parentheses_match(string) =
let
 depth = plus_scan({if c==`(then 1 else -1 : c in string});
 depth = {d + (if c==`(then 1 else 0): c in string; d in depth};
 rnk = permute([0:#string], rank(depth));
 ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);

For each index, return the index of the matching parenthesis

 one scan, a map, a zipWith, two permutes and an interleave,
also rank and odd_elts and even_elts

rank([6,8,9,7]);

it = [0, 2, 3, 1] : [int]

rank([6,8,9,7,9]);

it = [0, 2, 3, 1, 4] : [int]

parentheses matching

function parentheses_match(string) =
let
 depth = plus_scan({if c==`(then 1 else -1 : c in string});
 depth = {d + (if c==`(then 1 else 0): c in string; d in depth};
 rnk = permute([0:#string], rank(depth));
 ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);

For each index, return the index of the matching parenthesis

 one scan, a map, a zipWith, two permutes and an interleave,
also rank and odd_elts and even_elts

A ”step through” of this
function is provided at end of

these slides

Break?

What does Nested mean??

{plus_scan(a) : a in [[2,3], [8,3,9], [7]]};

it = [[0, 2], [0, 8, 11], [0]] : [[int]]

What does Nested mean??

{plus_scan(a) : a in [[2,3], [8,3,9], [7]]};

it = [[0, 2], [0, 8, 11], [0]] : [[int]]

sequence of sequences
apply to each of a PARALLEL

function

What does Nested mean??

{plus_scan(a) : a in [[2,3], [8,3,9], [7]]};

it = [[0, 2], [0, 8, 11], [0]] : [[int]]

sequence of sequences
apply to each of a PARALLEL

function

Implemented using Blelloch’s Flattening Transformation, which
converts nested parallelism into flat. Brilliant idea, challenging
to make work in fancier languages (see DPH and good work on Manticore (ML))

What does Nested mean??
Another example

function svxv (sv, v) =
sum ({x * v[i] : (x, i) in sv});

function smxv (sm, v) =
{ svxv(row, v) : row in sm }

Nested parallelism

Arbitrarily nested parallel loops + fork-join

Assumes no synchronization among parallel
tasks except at join points => a task can only sync with its
parent (sometimes called fully strict)

Deterministic (in absence of race conditions)

Advantages (according to Blelloch):
 Good schedulers are known
 Easy to understand, debug, and analyze

Nested Parallelism

Dependence graph is series-parallel

Nested Parallelism

Dependence graph is series-parallel

 Task can only synchronise with
its parent

But not

But not

Here, a task can only

synchronise with an ancestor
(strict (but not fully strict))

Back to examples

this prescan is actually flat

function scan_op(op,identity,a) =

if #a == 1 then [identity]

else

 let e = even_elts(a);

 o = odd_elts(a);

 s = scan_op(op,identity,{op(e,o): e in e; o in o})

 in interleave(s,{op(s,e): s in s; e in e});

Back to examples
Batcher’s bitonic merge IS NESTED

function bitonic_sort(a) =

if (#a == 1) then a

else

 let

 bot = subseq(a,0,#a/2);

 top = subseq(a,#a/2,#a);

 mins = {min(bot,top):bot;top};

 maxs = {max(bot,top):bot;top};

 in flatten({bitonic_sort(x) : x in [mins,maxs]});

and so is the sort

Back to examples
Batcher’s bitonic merge IS NESTED

function bitonic_sort(a) =

if (#a == 1) then a

else

 let

 bot = subseq(a,0,#a/2);

 top = subseq(a,#a/2,#a);

 mins = {min(bot,top):bot;top};

 maxs = {max(bot,top):bot;top};

 in flatten({bitonic_sort(x) : x in [mins,maxs]});

and so is the sort

nestedness is good for D&C
and for irregular computations

Back to examples
parentheses matching is FLAT

function parentheses_match(string) =
let
 depth = plus_scan({if c==`(then 1 else -1 : c in string});
 depth = {d + (if c==`(then 1 else 0): c in string; d in depth};
 rnk = permute([0:#string], rank(depth));
 ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);

For each index, return the index of the matching parenthesis

What about a cost model?

Blelloch empasises
1) work : total number of operations

 represents total cost (integral of needed resources over time = running time on
one processor)

2) depth or span: longest chain of sequential (functional) dependencies
 best possible running time on an unlimited number of processors

 claims:
1) easier to think about algorithms based on work and depth than to use running time

on machine with P processors (e.g. PRAM)
2) work and depth predict running time on various different machines
 (at least in the abstract)

What about a cost model?

Blelloch empasises
1) work : total number of operations

 represents total cost (integral of needed resources over time = running time on
one processor)

2) depth or span: longest chain of sequential (functional) dependencies
 best possible running time on an unlimited number of processors

 claims:
1) easier to think about algorithms based on work and depth than to use running time

on machine with P processors (e.g. PRAM)
2) work and depth predict running time on various different machines
 (at least in the abstract)

cost model is language based rather than machine based

Part 1: simple language based performance model

slide from Blelloch’s ICFP10 invited talk

slide from Blelloch’s ICFP10 invited talk

slide from Blelloch’s ICFP10 invited talk

slide from Blelloch’s ICFP10 invited talk

Oops. The colour is wrong. Should be pink (not blue)

slide from Blelloch’s ICFP10 invited talk

slide from Blelloch’s ICFP10 invited talk

slide from Blelloch’s ICFP10 invited talk

Brings us back to the paper at the beginning (which is from
ICFP 96)

slide from Blelloch’s ICFP10 invited talk

Blelloch:
programming based cost models could change the way people think about
costs and open door for other kinds of abstract costs
doing it in terms of machines.... "that's so last century"

Aside: Research needed!

Blelloch has pointed the way

ICFP96

Spoonhower et al (JFP’11)

https://www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/blelloch/papers/SBHG11.pdf

Cache and IO efficient functional algs (with Harper, POPL 13)

http://www.cs.cmu.edu/~rwh/papers/iolambda/short.pdf

Cost models that programmers can really use need to be developed

https://www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/blelloch/papers/SBHG11.pdf
http://www.cs.cmu.edu/~rwh/papers/iolambda/short.pdf
http://www.cs.cmu.edu/~rwh/papers/iolambda/short.pdf

Back to ICFP96 paper

slide from Blelloch’s ICFP10 invited talk

Back to ICFP96 paper

slide from Blelloch’s ICFP10 invited talk

Brent’s Lemma: might expect O(w/p + d)
log p term is because of how flattening is done (flatten
the arrays and use segmented scans)
So scan is essential in the implementation too, not just a tool
for the programmer

Background info: Brent’s lemma

If a computation can be performed in t steps with q operations on a parallel
computer (formally, a PRAM) with an unbounded number of processors, then
the computation can be performed in t + (q-t)/p steps with p processors

http://maths-people.anu.edu.au/~brent/pd/rpb022.pdf

(paper from ‘74)

http://maths-people.anu.edu.au/~brent/pd/rpb022.pdf
http://maths-people.anu.edu.au/~brent/pd/rpb022.pdf
http://maths-people.anu.edu.au/~brent/pd/rpb022.pdf
http://maths-people.anu.edu.au/~brent/pd/rpb022.pdf

Back to our scan

oblivious or data independent computation

N = 2n inputs, work of dot is 1
work = ?
depth = ?

and bitonic sort? (see Blelloch’s ICFP10 invited talk for quicksort etc.)

From the NESL quick reference

Basic Sequence Functions
Basic Operations Description Work Depth
#a Length of a O(1) O(1)
a[i] ith element of a O(1) O(1)
dist(a,n) Create sequence of length n with a in each element. O(n) O(1)
zip(a,b) Elementwise zip two sequences together into a sequence of pairs. O(n) O(1)
[s:e] Create sequence of integers from s to e (not inclusive of e) O(e-s) O(1)
[s:e:d] Same as [s:e] but with a stride d. O((e-s)/d) O(1)

Scans
plus_scan(a) Execute a scan on a using the + operator O(n) O(log n)
min_scan(a) Execute a scan on a using the minimum operator O(n) O(log n)
max_scan(a) Execute a scan on a using the maximum operator O(n) O(log n)
or_scan(a) Execute a scan on a using the or operator O(n) O(log n)
and_scan(a) Execute a scan on a using the and operator O(n) O(log n)

Data Parallel Haskell (DPH) intentions

NESL was a seminal breakthrough but, fifteen years later it remains largely un-exploited.
Our goal is to adopt the key insights of NESL, embody them in a modern, widely-used
functional programming language, namely Haskell, and implement them in a state-of-the-
art Haskell compiler (GHC). The resulting system, Data Parallel Haskell, will make nested
data parallelism available to real users.

Doing so is not straightforward. NESL a first-order language, has very few data types,
was focused entirely on nested data parallelism, and its implementation is an interpreter.
Haskell is a higher-order language with an extremely rich type system; it already includes
several other sorts of parallel execution; and its implementation is a compiler.

http://www.cse.unsw.edu.au/~chak/papers/fsttcs2008.pdf

http://www.cse.unsw.edu.au/~chak/papers/fsttcs2008.pdf

NESL on GPU!

First NDP language on GPU

End

Next lecture (Thursday)

 DPH (nested)

 Repa (flat)

parentheses matching

function parentheses_match(string) =
let
 depth = plus_scan({if c==`(then 1 else -1 : c in string});
 depth = {d + (if c==`(then 1 else 0): c in string; d in depth};
 rnk = permute([0:#string], rank(depth));
 ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);

For each index, return the index of the matching parenthesis

() (() ()) ((()))

1 -1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1

() (() ()) ((()))

1 -1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1

0 1 0 1 2 1 2 1 0 1 2 3 2 1

prescan
(+)

() (() ()) ((()))

1 -1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1

0 1 0 1 2 1 2 1 0 1 2 3 2 1

1 1 1 2 2 2 2 1 1 2 3 3 2 1

+1 if (
+0 if)

() (() ()) ((()))

1 -1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1

0 1 0 1 2 1 2 1 0 1 2 3 2 1

1 1 1 2 2 2 2 1 1 2 3 3 2 1 depth

+1 if (
+0 if)

() (() ()) ((())) string

1 -1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1

0 1 0 1 2 1 2 1 0 1 2 3 2 1

1 1 1 2 2 2 2 1 1 2 3 3 2 1 depth

0 1 2 6 7 8 9 3 4 10 12 13 11 5 rank(depth)

() (() ()) ((())) string

1 -1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1

0 1 0 1 2 1 2 1 0 1 2 3 2 1

1 1 1 2 2 2 2 1 1 2 3 3 2 1 depth

0 1 2 3 4 5 6 7 8 9 10 11 12 13 [0:#string]
0 1 2 6 7 8 9 3 4 10 12 13 11 5 rank(depth)

0 1 2 7 8 13 3 4 5 6 9 12 10 11 rnk

() (() ()) ((())) string

1 -1 1 1 -1 1 -1 -1 1 1 1 -1 -1 -1

0 1 0 1 2 1 2 1 0 1 2 3 2 1

1 1 1 2 2 2 2 1 1 2 3 3 2 1 depth

0 1 2 3 4 5 6 7 8 9 10 11 12 13 [0:#string]
0 1 2 6 7 8 9 3 4 10 12 13 11 5 rank(depth)

0 1 2 7 8 13 3 4 5 6 9 12 10 11 rnk

permute
([0:#string),rank(depth));

() (() ()) ((())) string

1 1 1 2 2 2 2 1 1 2 3 3 2 1 depth

0 1 2 3 4 5 6 7 8 9 10 11 12 13 [0:#string]
0 1 2 6 7 8 9 3 4 10 12 13 11 5 rank(depth)

0 1 2 7 8 13 3 4 5 6 9 12 10 11 rnk

1 0 7 2 13 8 4 3 6 5 2 9 11 10 ret

() (() ()) ((())) string

1 1 1 2 2 2 2 1 1 2 3 3 2 1 depth

0 1 2 6 7 8 9 3 4 10 12 13 11 5 rank(depth)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 [0:#string]

0 1 2 7 8 13 3 4 5 6 9 12 10 11 rnk

1 0 7 2 13 8 4 3 6 5 2 9 11 10 ret

 interleave(odd_elts(rnk), even_elts(rnk))

() (() ()) ((())) string

1 1 1 2 2 2 2 1 1 2 3 3 2 1 depth

0 1 2 6 7 8 9 3 4 10 12 13 11 5 rank(depth)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 [0:#string]

1 0 7 2 13 8 4 3 6 5 2 9 11 10 ret
0 1 2 7 8 13 3 4 5 6 9 12 10 11 rnk

1 0 7 4 3 6 5 2 13 12 11 10 9 8

() (() ()) ((())) string

1 1 1 2 2 2 2 1 1 2 3 3 2 1 depth

0 1 2 6 7 8 9 3 4 10 12 13 11 5 rank(depth)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 [0:#string]

1 0 7 2 13 8 4 3 6 5 2 9 11 10 ret
0 1 2 7 8 13 3 4 5 6 9 12 10 11 rnk

1 0 7 4 3 6 5 2 13 12 11 10 9 8

permute(ret,rnk);

() (() ()) ((())) string

1 0 7 4 3 6 5 2 13 12 11 10 9 8

