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Data parallelism

Introduce parallel data structures and make

operations on them parallel

Often data parallel arrays

Canonical example : NESL (NESted-parallel Language)
(Blelloch)



NESL

concise (good for specification, prototyping)

allows programming in familiar style (but still gives parallelism)
allows nested parallelism (see later)

associated language-based cost model

gave decent speedups on wide-vector parallel machines of the day

Hugely influential!

http://www.cs.cmmu.edu/~scandal/nesl.html
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NESL

Parallelism without concurrency!
Completely deterministic (modulo floating point noise)

No threads, processes, locks, channels, messages, monitors,
barriers, or even futures, at source level

Based on Blelloch’s thesis work: Vector Models for Data-Parallel
Computing, MIT Press 1990
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NESL

NESL is a sugared typed lambda calculus with a set

of array primitives and an explicit parallel map over
arrays

To be useful for analyzing parallel algorithms, NESL was
designed with rules for calculating the work (the total
number of operations executed) and depth (the longest
chain of sequential dependence) of a computation.



Quotes are from ICFP’96 paper

A Provable Time and Space Efficient Implementation of NESL

Guy E. Blelloch and John Greiner
Carnegie Mellon University
{blelloch, jdg}@cs. cou. edu

Abstract

In this paper we prove time and space bounds for the im-
plementation of the programming language NEsSL on vazious
parallel machine models. WESL is a sugared typed A-calculua
with a set of array primitives and an explicit parallel map
over arrays, Ouar results extend previous work on provabie
implementation bounds for functional languages by consid-
ering space and by including arrays. For modeling the cost
of NESL we augment a standard call-by-value operational
semantics to return two cost measures: a DAG represent-
ing the sequential dependences in the computation, and a
messure of the space taken by a sequential implementation.
We show that a NEsSL program with w work (nodes in the
DAG), d depth (levels in the DAG), and & sequential space
can be implemented on & p processor butterfly network, hy-
percube, or CROW PRAM 115i.nj% Ofw/p+dlogp) time and
()5 + dplog p) reachable space.’ For programs with suffi-
cient parallelism these bounds are optimal in that they give
linear speedop and use space within a constant factor of the
seguential space.

The ides of & provably efficient implementation is to add
to the semantics of the langnage an accounting of costs, and
then to prove a mapping of these costs into running time
and/or space of the implementation on concrete machine
models {or possibly to costg in other languages). The mo-
tivation is to assure that the costs of a program are well
defined and to make guarantees about the performance of
the implementation. In previous work we have studied prov-
ably time efficient parallel implementations of the A-calculns
using hoth call-by-value [3] and speculative parallelism [18].
These results accounted for work and depth of a compu-
tation using a profiling semantics [20, 30] and then related
work and depth to running time on various machine models,

This paper applics these ideas to the language Nesu and
extends the work in two ways. First, it includes sequences
{arrays) as a primitive data type and accounts for them in
both the cost semantics and the implementation. This 15
motivated by the fact that arrays cannot be simulated effi-
ciently in the A-calculus without arrays (the simulation of
an array of length n uging recursive types requires a (log n)
dlowdown). Second, it augments the profiling semantica with
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This paper adds the accounting of costs to the semantics
of the language and proves a mapping of those costs into
running time / space on concrete machine models
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()5 + dplog p) reachable space.’ For programs with suffi-
cient parallelism these bounds are optimal in that they give
linear speedop and use space within a constant factor of the
seguential space.

The ides of & provably efficient implementation is to add
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Connection Machine

First commercial massively
parallel machine

65k processors

can see CM-1 and CM-5

(from 1993) at Computer
History Museum, Mountain
View

Image: © Thinking Machines Corporation, 1986.
Photo: Steve Grohe.

http://www.venturenavigator.co.uk/content/152
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NESL array operations

function factorial(n) =
if (n<=1) then 1
else n*factorial(n-1);

{factorial(i) : iin [3, 1, 7]};

apply to each = parallel map (works with user-defined functions
=> load balancing)

list comprehension style notation



Online interpreter ©

The result of:

function factorial(n) =
if (n <= 1) then 1

else n*factorial(n-1);

{factorial(i) : i in [3, 1, 71};
IS.

factorial = fn : int -> int

it = [6, 1, 5040] : [int]

Bye.

http://www.cs.cmmu.edu/~scandal/nesl/tutorial2.html



http://www.cs.cmu.edu/~scandal/nesl/tutorial2.html

apply to each (multiple sequencs)

The result of:

{fatb:ain[3,-4,-9];bin[1, 2, 3]};
IS:

it =[4, -2, -6] : [int]

Bye.



apply to each (multiple sequencs)

The result of:

{fatb:ain[3,-4,-9];bin[1, 2, 3]};
IS:

it = [4, -2, -6] : [int]
Bye.
Qualifiers in comprehensions are zipping rather than nested as in Haskell

Prelude>[a+b | a<-[3,-4,-9], b <-[1,2,3]]
[4;516;_31_2;_11_8;_71_6]



Filtering too

The result of:
{a*a:ain[3, -4,-9, 5] | a>0};
iS:

it = [9, 25] : [int]

Bye



scan (Haskell first)

*Main> scanll (+) [1..10]
[1,3,6,10,15,21,28,36,45,55]

*Main> scanll (*) [1..10]
[1,2,6,24,120,720,5040,40320,362880,3628800]
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scan diagram
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recursive decomposition

a, a, a,

5253‘ . . . ..

j
- * * *
S5=a,%a,, ... % a

indices from 1 here



recursive decomposition

a, a, 4;

5253‘ . . . ..

j
- * * *
S5=a,%a,, ... % a

\
one recursive call on n/2
inputs
\_ J
a S S St
divide
conquer

combine



prescan

scan ”shifted right by one”
prescan of

[a;,, a, )83
1S

Ia4

4 Vi

* * * *
I, a;, a;*a,, a;*a,*ay, ...,a; * ...

identity element ]

* an-l]



scan from prescan

easy (constant time)

X X * X X
I, a, a;*a, a;*a,*a;, ...,a;,*...%a, 4] a

-~ o

| * * * * % T
la;, a; *a,, a;*a,*ag,...,a;, ... %a 4,8, F...%a,]

n



the power of scan

Blelloch pointed out that once you have scan
you can do LOTS of interesting algorithms, inc.

To lexically compare strings of characters. For example, to determine that "strategy"
should appear before "stratification" in a dictionary

To evaluate polynomials
To solve recurrences. For example, to solve the recurrences
X, = ax,+bx,andx.=a +b, /x4
To implement radix sort
To implement quicksort
To solve tridiagonal linear systems
To delete marked elements from an array
To dynamically allocate processors
To perform lexical analysis. For example, to parse a program into tokens
and many more

http://www.cs.cmu.edu/~blelloch/papers/Ble93.pdf
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prescan in NESL

function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
let e = even_elts(a);
0 = odd_elts(a);
s = scan_op(op,identity,{op(e,0): e in e; 0 in 0})
in interleave(s,{op(s,e): sins; eine});



prescan in NESL

function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
let e = even_elts(a);
0 = odd_elts(a);
s = scan_op(op,identity,{op(e,0): e in e; 0 in o})
in interleave(s,{op(s,e): sin s; e in e}];

zZipWith op e o
zipWith op s e




prescan

function scan_op(op,identity,a) =
If #a == 1 then [identity]
else
let e = even_elts(a);
0 = odd_elts(a);
S = scan_op(op,identity,{op(e,0): ein e; 0 in 0})
In interleave(s,{op(s,e): sin s; ein e});

Scan_Op('+, OI [2) 8) 3) _4) 11 91 _21 7]);
is:
scan_op =fn: ((b, b) -> b, b, [b]) -> [b] :: (a in any; b in any)

it=1[0, 2,10, 13,9, 10, 19, 17] : [int]



prescan

function scan_op(op,identity,a) =
If #a == 1 then [identity]
else
let e = even_elts(a);
0 = odd_elts(a);
S = scan_op(op,identity,{op(e,0): ein e; 0 in 0})
In interleave(s,{op(s,e): sin s; ein e});

scan_op(max, 0, [2, 8, 3,-4,1,9, -2, 7]);
is:

scan_op =fn: ((b, b) -> b, b, [b]) -> [b] :: (a in any; b in any)

it=1[0,2,8,8,8,8,9,9]:[int]



Exercise

Try to write scan (as distinct from prescan)

Call it oscan (as scan is built in (gives both prescan list and
the final element))

Note that apply-to-each on two sequences demands that the two
sequences have equal length (unlike zipWith)

Assume first that the sequence has length a power of two

Type your answer into one of the boxes on
http://www.cs.cmu.edu/~scandal/nesl/tutorial2.html



http://www.cs.cmu.edu/~scandal/nesl/tutorial2.html

Outline of one possible solution

function init is = take(is,#is-1);
function tail is = drop(is,1);

function oscan(op,v) =

if #v == 1 then v

else let es = even elts(v);
os = odd elts(v);
is = oscan(..);

us
in interleave .. ;



Outline of one possible solution

function init is = take (is,#1is-1);
function tail is = drop(is,1);

function oscan(op,v) =

if #v == 1 then v
else let es = even elts(v);
os = odd elts(v);
TS 7 9% interleave([1,2,3],[4,5,6]);
us = ..
in interleave .. He = [, 4, 2. 5 3. 6] 5 [kl

it = [1, 4, 2, 5, 3] : [int]

interleave ([1,2,31,104]):;

RUNTIME ERROR: Length mismatch for function INTERLEAVE.



Batcher’s bitonic merge

function bitonic_sort(a) =
if (#a == 1) then a
else
let
bot = subseq(a,0,#a/2);
top = subseq(a,#a/2,#a);
mins = {min(bot,top):bot;top};
maxs = {max(bot,top):bot;top};
in flatten({bitonic_sort(x) : x in [mins,maxs]});



bitonic sort (merger)

max

min



bitonic sort

(merger)

max

min

bot —




bitonic sort

function batcher_sort(a) =

if (#a==1) then a

else
let b = {batcher_sort(x) : x in bottop(a)};
In bitonic_sort(b[0]++reverse(b[1]));



bitonic sort

sort

rev

sort

bitonic
merge




bitonic sort

sort rev

sort

bitonic
merge

For some fun with sorting networks in Obsidian, see
http://www.cse.chalmers.se/~joels/writing /expressive.pdf



http://www.cse.chalmers.se/~joels/writing/expressive.pdf

parentheses matching

For each index, return the index of the matching parenthesis

function parentheses_match(string) =

let
depth = plus_scan({if c=="( then 1 else -1 : c in string});
depth ={d + (if c=="( then 1 else 0): c in string; d in depth};
rnk = permute([0:#string], rank(depth));
ret = interleave(odd_elts(rnk), even_elts(rnk))

in permute(ret, rnk);

one scan, a map, a zipWith, two permutes and an interleave,
also rank and odd_elts and even_elts



parentheses matching

permute([7,8,9],[2,1,0]);
permute([7,8,9],[1,2,0]);

For each index, retuin tne In
it=1[9, 8, 7] : [int]

function parentheses_match(
let
depth = plus_scan({if c=="( then 1 else -1 : c in string});
depth ={d + (if c=="( then 1 else 0): c in string; d in depth};
rnk = permute([0:#string], rank(depth));
ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);

it=1[9, 7, 8] : [int]

one scan, a map, a zipWith, two permutes and an interleave,
also rank and odd_elts and even_elts



parentheses matching

rank([6,8,9,7]);

, , it=1[0, 2, 3, 1] : [int]
For each index, return the in

function parentheses_match( rank([6,8,9,7,9]);
let
depth = plus_scan({if c==" it=1[0, 2, 3, 1, 4] : [int]

depth ={d + (if c=="(then 1

rnk = permute([0:#string], rank(depth));

ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);

one scan, a map, a zipWith, two permutes and an interleave,
also rank and odd_elts and even_elts



parentheses matching

A ”step through” of this
function is provided at end of

For each index, return the index of the matching pc these slides

function parentheses_match(string) =

let
depth = plus_scan({if c=="( then 1 else -1 : c in string});
depth ={d + (if c=="( then 1 else 0): c in string; d in depth};
rnk = permute([0:#string], rank(depth));
ret = interleave(odd_elts(rnk), even_elts(rnk))

in permute(ret, rnk);

one scan, a map, a zipWith, two permutes and an interleave,
also rank and odd_elts and even_elts



Break?



What does Nested mean??

{plus_scan(a) : a in [[2,3], [8,3,9], [7]1};

it = [[0, 2], [0, 8, 111, [0]] : [[int]]



What does Nested mean??

sequence of sequences
apply to each of a PARALLEL
function

{plus_scan(a) : a in [[2,3], [8,3,9], [7]1};

it = [[0, 2], [0, 8, 111, [0]] : [[int]]



What does Nested mean??

sequence of sequences
apply to each of a PARALLEL
function

{plus_scan(a) : a in [[2,3], [8,3,9], [7]1};

it = [[0, 2], [0, 8, 111, [0]] : [[int]]

Implemented using Blelloch’s Flattening Transformation, which
converts nested parallelism into flat. Brilliant idea, challenging
to make work in fancier languages (see DPH and good work on Manticore (ML))



What does Nested mean??
Another example

function svxv (sv, v) =
sum ({x * v[i] : (x, i) in sv});

function smxv (sm, v) =
{ svxv(row, v) : row in sm }



Nested parallelism

Arbitrarily nested parallel loops + fork-join

Assumes no synchronization among parallel

tasks except at join points => a task can only sync with its
parent (sometimes called fully strict)

Deterministic (in absence of race conditions)
Advantages (according to Blelloch):

Good schedulers are known
Easy to understand, debug, and analyze



Nested Parallelism

Dependence graph is series-parallel



Nested Parallelism

Dependence graph is series-parallel

Task can only synchronise with
its parent



But not




But not

Here, a task can only
synchronise with an ancestor
(strict (but not fully strict))




Back to examples



this prescan is actually flat

function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
let e = even_elts(a);
0 = odd_elts(a);
s = scan_op(op,identity,{op(e,0): e in e; 0 in 0})
in interleave(s,{op(s,e): sins; eine});



Back to examples
Batcher’s bitonic merge IS NESTED

function bitonic_sort(a) =
if (#a==1) then a
else
let
bot = subseq(a,0,#a/2);
top = subseq(a,#a/2,#a);
mins = {min(bot,top):bot;top};
maxs = {max(bot,top):bot;top};
In flatten({bitonic_sort(x) : X in [mins,maxs]});

and so is the sort



Back to examples
Batcher’s bitonic merge IS NESTED

function bitonic_sort(a) =

if (#a==1) then a

else

let

bot = subseq(a,0,#a/2);
top = subseq(a,#a/2,#a);
mins = {min(bot,top):bot;top};
maxs = {max(bot,top):bot;top};

In flatten({bitonic_sort(x) : X in [mins,maxs]});

and so is the sort

nestedness is good for D&C
and for irregular computations



Back to examples
parentheses matching is FLAT

For each index, return the index of the matching parenthesis

function parentheses_match(string) =

let
depth = plus_scan({if c=="( then 1 else -1 : c in string});
depth = {d + (if c=="( then 1 else 0): c in string; d in depth};
rnk = permute([0:#string], rank(depth));
ret = interleave(odd_elts(rnk), even_elts(rnk))

in permute(ret, rnk);



What about a cost model?

Blelloch empasises

1) work : total number of operations

represents total cost (integral of needed resources over time = running time on
one processor)

2) depth or span: longest chain of sequential (functional) dependencies
best possible running time on an unlimited number of processors

claims:

1) easier to think about algorithms based on work and depth than to use running time
on machine with P processors (e.g. PRAM)

2) work and depth predict running time on various different machines
(at least in the abstract)



What about a cost model?

Blelloch empasises

1) work : total number of operations
2 = running time on

cost model is language based rather than machine based

2) de lependencies
best possible running time on an unlin.. )T processors
claims:

1) easier to think about algorithms based on work ana depth than to use running time
on machine with P processors (e.g. PRAM)

2) work and depth predict running time on various different machines
(at least in the abstract)



Part 1: simple language based performance model

Call-by-value A-calculus

dc.el| Ax.e (LAM)

el x.e e, v elv/x]|V

e e, |V

(APP)

slide from Blelloch’s ICFP10 invited talk



The Parallel A-calculus: cost model
el viw.,d

Reads: expression e evaluates to v with work w
and span d.

* Work (W): sequential work

* Span (D): parallel depth

slide from Blelloch’s ICFP10 invited talk



The Parallel A-calculus: cost model

e | x el (LAM)
e b ] e,V ] et v D
e e, | v'; _ 1+ max(d,,d,) +d,
Work adds
Span adds sequentially, d

and max in parallel

slide from Blelloch’s ICFP10 invited talk



The Parallel A-calculus: cost model

v all 3. .-_1.-.1_| T ANIY

€ J Oops. The colour is wrong. Should be pink (not blue)
€

Work adds
Span adds sequentially,
and max in parallel

slide from Blelloch’s ICFP10 invited talk



The Parallel A-calculus cost model

Jx.ell Ax.e; 1l (LAM)

e, | Ax.e;wpd, e, || viw,d, ev/x1|v':w,.d,

. (APP)
e e, | v 1+w +w, +w,, 1+max(d,.d,) +d,

cle 11 (CONST)

el cownd e, | v,w,d, Oo(w)| )V
e e, v 1+w +w,, 1+max(d,.d,)

(APPC)

c,=0,--n++p,-4,.<,<p, <X, X, -, X, oo (constants)

n n

slide from Blelloch’s ICFP10 invited talk



Adding Functional Arrays: NESL

{e;:xine, | ey}

f»'[wx]{m w.d.  i€{l...n}

{e"“xmlv,...v 1} [v,...v, ] l+zI Wi, 1 +max) |1d
Primitives:
<- : 'a seq * (int,’a) seq -> ‘a seq
¢ [grcrarp] <- [(UrdJrisz}r(orl)]
[1,¢,£,pP]
[ICFP95]

elt, index, length

slide from Blelloch’s ICFP10 invited talk



Adding Functional Arrays: NESL

{e;:xine, | ey}

e'wv./x1v."w.d i€{l.. n}

Brings us back to the paper at the beginning (which is from
ICFP 96)

¢ [grcrarp] <- [(Ord)risz}r\
[1,c,f,p]

elt, index, length [ICFP35]

slide from Blelloch’s ICFP10 invited talk



Adding Functional Arrays: NESL

{e;:xine, | ey}

Blelloch:
programming based cost models could change the way people think about

costs and open door for other kinds of abstract costs
doing it in terms of machines.... "that's so last century"

<- : 'a seq * (int,’a) seq -> ‘a seq
¢ [grcrarp] <- [(UrdJrisz}r(orl)]
[1,¢,£,pP]

elt, index, length [ICFP35]

slide from Blelloch’s ICFP10 invited talk



Aside: Research needed!

Blelloch has pointed the way
ICFP96

Spoonhower et al (JFP’11)
https://www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/blelloch/papers/SBHG11.pdf

Cache and IO efficient functional algs (with Harper, POPL 13)
http://www.cs.cmu.edu/~rwh/papers/iolambda/short.pdf

Cost models that programmers can really use need to be developed


https://www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/blelloch/papers/SBHG11.pdf
http://www.cs.cmu.edu/~rwh/papers/iolambda/short.pdf
http://www.cs.cmu.edu/~rwh/papers/iolambda/short.pdf

Back to ICFP96 paper

The Second Half:
Provable Implementation Bounds

Theorem [FPCA95]:If e | v; w,d then v can be
calculated from ¢ on a CREW PRAM with p

processors in 0(—+d10_p time.

Can’t really do better than: 11133{%@]

If w/p >d log p then “work dominates”

We refer to w/p as the parallelism.

slide from Blelloch’s ICFP10 invited talk



B Brent’s Lemma: might expect O(w/p + d)
log p term is because of how flattening is done (flatten

the arrays and use segmented scans)
So scan is essential in the implementation too, not just a tool

for the programmer
Provanile i ,TION Bounds

Theorem [FPCA9S5]. v: w.d then v can be
calculated from e ¢ a CREW PRAM with p

Processors in o‘immg;;J time.
P

Can’t really do better than: 1113:{i%,d1
If w/p >d log p then “work dominates”

We refer to w/p as the parallelism.

slide from Blelloch’s ICFP10 invited talk



Background info: Brent’s lemma

If a computation can be performed in t steps with g operations on a parallel
computer (formally, a PRAM) with an unbounded number of processors, then
the computation can be performed in t + (g-t)/p steps with p processors

http://maths-people.anu.edu.au/~brent/pd/rpb022.pdf

(paper from ‘74)


http://maths-people.anu.edu.au/~brent/pd/rpb022.pdf
http://maths-people.anu.edu.au/~brent/pd/rpb022.pdf
http://maths-people.anu.edu.au/~brent/pd/rpb022.pdf
http://maths-people.anu.edu.au/~brent/pd/rpb022.pdf

Back to our scan
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oblivious or dataindependent computation
N =2" inputs, work of dotis1
work = ?

depth =7

and bitonic sort? (see Blelloch’s ICFP10 invited talk for quicksort etc.)




From the NESL quick reference

Basic Sequence Functions

Basic Operations Description Work Depth
#a Length of a 0O(1) 0O(1)
a[i] ith element of a 0O(1) 0O(1)
dist(a,n) Create sequence of length n with a in each element. O(n) 0O(1)
zip(a,b) Elementwise zip two sequences together into a sequence of pairy. O(n) O(1)
[s:e] Create sequence of integers from s to e (not inclusive of e) O(e-s)  0O(1)
[s:e:d] Same as [s:e] but with a stride d. O((e-s)/d)O(1)
Scans

plus_scan(a) Execute a scan on a using the + operator O(n) O(log n)
min_scan(a) Execute a scan on a using the minimum operator O(n) O(log n)
max_scan(a) Execute a scan on a using the maximum operator O(n) O(log n)
or_scan(a) Execute a scan on a using the or operator O(n) O(log n)
and_scan(a) Execute a scan on a using the and operator O(n) O(log n)




Data Parallel Haskell (DPH) intentions

NESL was a seminal breakthrough but, fifteen years later it remains largely un-exploited.
Our goal is to adopt the key insights of NESL, embody them in a modern, widely-used
functional programming language, namely Haskell, and implement them in a state-of-the-
art Haskell compiler (GHC). The resulting system, Data Parallel Haskell, will make nested
data parallelism available to real users.

Doing so is not straightforward. NESL a first-order language, has very few data types,

was focused entirely on nested data parallelism, and its implementation is an interpreter.
Haskell is a higher-order language with an extremely rich type system; it already includes
several other sorts of parallel execution; and its implementation is a compiler.

http://www.cse.unsw.edu.au/~chak/papers/fsttcs2008.pdf



http://www.cse.unsw.edu.au/~chak/papers/fsttcs2008.pdf
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Abstract

Graphics processing units (GPUs) provide both memory bandwidth
and arithmetic performance far greater than that available on CPUs
but, because of their Single-Instruction-Multiple-Data (SIMD) ar-
chitecture, they are hard to program. Most of the programs ported
to GPUs thus far use traditional data-level parallelism, performing
only operations that operate uniformly over vectors.

NESL is a first-order functional language that was designed to
allow programmers Lo write irregular-parallel programs — such as
parallel divide-and-conguer algorithms — for wide-vector parallel
computers. This paper presents our port of the NESL implementa-
tion to work on GPUs and provides empirical evidence that nested
data-parallelism (NDP) on GPUs significantly outperforms CPU-
based implementations and matches or beats newer GPU languages
that support only flat parallelism. While our performance does not
match that of hand-tuned CUDA programs, we argue that the nota-
tional concisengss of NESL is worth the loss in performance. This
work provides the first language implementation that directly sup-
ports NDP on a GPU.

John Reppy

University of Chicago
jhr@cs.uchicago.edu

uniform problem subdivisions and non-uniform memory access,
such as divide-and-conquer algorithms.

Most GPU programming is done with the CUDA [NVI11b]
and OpenCL [Khr11] languages, which provide the illusion of
C-style general-purpose programming, but which actually impose
restrictions. There have been a number of efforts to support GPU
programming from higher-level languages, usually by embedding
a data-parallel DSL into the host language, but these efforts have
been limited to regular parallelism [CBS11, MM10, CKL™11].

The current best practice for irregular parallelism on a GPU
is for skilled programmers to laboricusly hand code applications.
The literature is rife with implementations of specific irregular-
parallel algorithms for GPUs [BP11, DR11, MLBP12, MGG12].
These efforts typically require many programmer-months of effort
to even meet the performance of the original optimized sequential
C program.

GPUs have some common characteristics with the wide-vector
supercompuiers of the 1980's, which similarly provided high-
performance SIMD computations. NESL is a first-order functional
language developed by Guy Blelloch in the early 1990°s that was
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First NDP language on GPU
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Next lecture (Thursday)

DPH (nested)
Repa (flat)



parentheses matching

For each index, return the index of the matching parenthesis

function parentheses_match(string) =

let
depth = plus_scan({if c=="( then 1 else -1 : c in string});
depth = {d + (if c=="( then 1 else 0): c in string; d in depth};
rnk = permute([0:#string], rank(depth));
ret = interleave(odd_elts(rnk), even_elts(rnk))

in permute(ret, rnk);



() cc)yc)ry)y o))

1-111-11-1-1111-1-1-1



() cc)yc)ry)y o))

1-111-11-1-1111-1-1-1

4 0101212 1012 3 21
prescan?

(+)




)y cc)ye)y)yococe)))
1-111-11-1-1111-1-1-1

00101212 1012 321
+1 if (
+0 if )

1 112222 1123 321



)y cc)ye)y)yococe)))
1-111-11-1-1111-1-1-1

00101212 1012 321
+1 if |
+0 if )

1 112222 1123 3 2 1 depth



() cc)yc)ry)y o)) )  string
1-111-11-1-1111-1-1-1
0101212 1012321
11122221123321 depth

01267 89 34101213115 rank(depth)



2

3
6

) )y )y CCC))) string

4
/

1-1-1111-1-1-1

12 1012 321

221123321 depth
56 7 8 910 111213 [O:#string]
8 9 3 410121311 5 rank(depth)

/ 8133 45 6 9 121011 rnk



2

) )y )y CCC))) string

1-1-1111-1-1-1

1212 1012 321
22221123321 depth
3456 7 8 910 111213 [O:#string]
67 8 9 3 4101213115 rank(depth)
/7 8133 45 6 5 i. permute

([O:##string),rank(depth));



) )y )y CCC))) string

2221123321 depth

910 111213 [O:#string]

4 56 7 8
7 8 9 3 4101213115 rank(depth)
8133 45 6 9 121011 rnk

138 4 36 52 9 11 10 ret



) )y )y CCC))) string

2221123321 depth

7 8 9 3 410121311 5 rank(depth)
4 5 6 7 8 910 111213 [O:#string]
813 3 45 6 9 121011 rnk

138 4 3 6

interleave(odd_elts(rnk), even_elts(rnk))



() cc)ryc)y)y o)) string

1112 2221123321 depth

012678 9 34101213115 rank(depth)
0123456 7 8 910111213 [O:#string]
1 07 2138 4 36 52 9 11 10 ret
01 27 8133 45 69 121011 rnk

107 4365 2131211109 8



() cc)ryc)y)y o)) string

1112 2221123321 depth

012678 9 34101213115 rank(depth)
0123456 7 8 910111213 [O:#string]
1 07 2138 4 36 52 9 11 10 ret
01 27 8133 45 69 121011 rnk

1 07 43 65 2133121110

permute(ret,rnk);



() cc)ryec)y rcoe))) string

T

1074365 2131211109 8



