DEPARTMENT OF COMPUTER SCIENCE

TY OF COPENHAGEN

Faculty of Science

Eden: Parallel Processes, Patterns and Skeletons

Jost Berthold

berthold@diku.dk
Department of Computer Science

Chalmers University of Technology, April 2013
Slide 1/37



UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Contents

@ The Language Eden (in a nutshell)

@® Skeleton-Based Programming

© Small-Scale Skeletons: Map and Reduce

@ Process Topologies as Skeletons

@ Algorithm-Oriented Skeletons: Two Classics

@ Summary

Slide 2/37 — J.Berthold — Eden — Chalmers, 04/2013




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Contents

@ The Language Eden (in a nutshell)

@® Skeleton-Based Programming

© Small-Scale Skeletons: Map and Reduce

@ Process Topologies as Skeletons

@ Algorithm-Oriented Skeletons: Two Classics

@ Summary

Learning Goals:
e Writing programs in the parallel Haskell dialect Eden
e Reasoning about the behaviour of Eden programs.

e Applying and implementing parallel skeletons in Eden @
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Parallel Dialects of Haskell

e Data-Parallel Haskell* (pure)
Type-driven parallel operations (on parallel arrays), sophisticated
compilation (vectorisation, fusion, ...)

e Glasgow Parallel Haskell** (pure)
par, seq annotations for evaluation control, Evaluation Strategies
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Parallel Dialects of Haskell

e Data-Parallel Haskell* (pure)
Type-driven parallel operations (on parallel arrays), sophisticated
compilation (vectorisation, fusion, ...)
e Glasgow Parallel Haskell** (pure)
par, seq annotations for evaluation control, Evaluation Strategies
e Eden* (“pragmatically impure”)
explicit process notion (mostly functional semantics), Distributed
Memory (per process), implicit/explicit message passing

I: shared memory, *: distributed memory .
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Parallel Dialects of Haskell

I: shared memory, *: distributed memory

Data-Parallel Haskell* (pure)
Type-driven parallel operations (on parallel arrays), sophisticated
compilation (vectorisation, fusion, ...)

Glasgow Parallel Haskell** (pure)

par, seq annotations for evaluation control, Evaluation Strategies
Eden* (“pragmatically impure”)

explicit process notion (mostly functional semantics), Distributed
Memory (per process), implicit/explicit message passing
Concurrent Haskell*, Eden implementation* (monadic)

explicit thread control and communication, full programmer control
and responsibility

Par Monad, Cloud Haskell (monadic)
newer explicit variants, approach similar to Eden implementation
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Eden Constructs in a Nutshell

e Developed since 1996 in Marburg and Madrid
e Haskell, extended by communicating processes for coordination
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Eden Constructs in a Nutshell
e Developed since 1996 in Marburg and Madrid

e Haskell, extended by communicating processes for coordination

Eden constructs for Process abstraction and instantiation

process ::(Trans a, Trans b)=> (a -> b) -> Process a b
(# ) :: (Trans a, Trans b) => (Process a b) -> a -> b
spawn :: (Trans a, Trans b) => [ Process a b ] -> [a] -> [b]

e Distributed Memory (Processes do not share data)

e Data sent through (hidden) 1:1 channels

e Type class Trans: e stream communication for lists
e concurrent evaluation of tuple components

Full evaluation of process output (if any result demanded)

e Non-functional features: explicit communication, n: 1 channels
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Quick Sidestep: WHNF, NFData and Evaluation

e Weak Head Normal Form (WHNF):
Evaluation up to the top level constructor
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Quick Sidestep: WHNF, NFData and Evaluation

e Weak Head Normal Form (WHNF):
Evaluation up to the top level constructor

e Normal Form (NF):
Full evaluation (recursively in sub-structures)

From Control.DeepSeq

class NFData a where
rnf :: a > () -- This was a _Strategy_ in 1998
rnf a = a ‘seq‘ () -- returning unit ()

instance NFData Int
instance NFData Double

instance (NFData a) => NFData [a] where
rmf [1 = QO

rnf (x:xs) = rnf x ‘seq‘ rnf xs

instance (NFData a, NFData b) => NFData (a,b) where
rnf (a,b) = rnf a ‘seq‘ rnf b
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Essential Eden: Process Abstraction/Instantiation

Process Abstraction: process :: (a -> b) -> Process a b
multproc = process (\x -> [ xxk | k <- [1,2..]1])
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Essential Eden: Process Abstraction/Instantiation

Process Abstraction: process :: (a -> b) -> Process a b
multproc = process (\x -> [ xxk | k <- [1,2..]1])

Process Instantiation: ) :: Process a b -> a -> b
multipleb = multproc # 5 5
Carem | mitprog
[5,10,15,20, ...

e Full evaluation of argument (concurrent) and result (parallel)
e Stream communication for lists
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Essential Eden: Process Abstraction/Instantiation

Process Abstraction: process :: (a -> b) -> Process a b
multproc = process (\x -> [ xxk | k <- [1,2..]1])

Process Instantiation: ) :: Process a b -> a -> b

multipleb = multproc # 5 5

parent |1 mitprod

[5,10,15,20, ...

e Full evaluation of argument (concurrent) and result (parallel)
e Stream communication for lists

Spawning multlple processes:. spawn :: [Process a bl -> [a] -> [b]
multiples = spawn (replicate 10 multproc) [1..10]

par ent
7090000000‘0‘

[1,2,3..]
//(2,4,6,_] '\M30..]

lnultproc@‘ lrmltproc@‘ ccococoo lrmltproc@ lrmltproc
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A Small Eden Example!

e Subexpressions evaluated in parallel
e ...in different processes with separate heaps

simpleeden.hs
main = do args <- getArgs
let first_stuff = (process f_expensive) # (args!!0)
other_stuff = g_expensive $# (args!!l) -- syntax variant
putStrLn (show first_stuff ++ ’\n’:show other_stuff)

!(compiled with option -parcp or -parmpi) o
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A Small Eden Example!

e Subexpressions evaluated in parallel
e ...in different processes with separate heaps

simpleeden.hs
main = do args <- getArgs
let first_stuff = (process f_expensive) # (args!!0)
other_stuff = g_expensive $# (args!!l) -- syntax variant
putStrLn (show first_stuff ++ ’\n’:show other_stuff)

... which will not produce any speedup!

!(compiled with option -parcp or -parmpi) o
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A Small Eden Example!

e Subexpressions evaluated in parallel
e ...in different processes with separate heaps

simpleeden.hs
main = do args <- getArgs
let first_stuff = (process f_expensive) # (args!!0)
other_stuff = g_expensive $# (args!!l) -- syntax variant
putStrLn (show first_stuff ++ ’\n’:show other_stuff)

... which will not produce any speedup!

simpleeden2. hs
main = do args <- getArgs
let [first_stuff,other_stuff]
= spawnF [f_expensive, g_expensive] args
putStrln (show first_stuff ++ ’\n’:show other_stuff)

e Processes are created when there is demand for the result!

e Spawn both processes at the same time using special function. @

!(compiled with option -parcp or -parmpi) o
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Basic Eden Exercise: Hamming Numbers

The Hamming Numbers are defined as the
ascending sequence of numbers:

{2"-31'-5k | i,j,keN}

Slide 8/37 — J.Berthold — Eden — Chalmers, 04/2013




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Basic Eden Exercise: Hamming Numbers

The Hamming Numbers are defined as the
ascending sequence of numbers:

{2"-31'-5k | i,j,keN}
Dijkstra:

The first Hamming number is 1. Each following Hamming
number H can be written as H = 2K, H = 3K, or H = 5K;
with a suitable smaller Hamming number K.
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Basic Eden Exercise: Hamming Numbers

The Hamming Numbers are defined as the
ascending sequence of numbers:

{2"-31-5k | i,j,keN}
Dijkstra:

The first Hamming number is 1. Each following Hamming
number H can be written as H = 2K, H = 3K, or H = 5K;
with a suitable smaller Hamming number K.

e Write an Eden program that produces
Hamming numbers using parallel processes.
The program should take one argument n
and produce the numbers up to position n.

e Observe the parallel behaviour of your
program using EdenTV.

OF COMPUTER SCIENCE

hamming
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Non-Functional Eden Constructs for Optimisation

Location-Awareness: noPe, selfPe :: Int
spawnAt :: (Trans a, Trans b) => [Int] -> [Process a bl -> [a] -> [b]
instantiateAt :: (Trans a, Trans b) =>

Int -> Process a b ->a ->I0b
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Non-Functional Eden Constructs for Optimisation

Location-Awareness: noPe, selfPe :: Int
spawnAt :: (Trans a, Trans b) => [Int] -> [Process a bl -> [a] -> [b]
instantiateAt :: (Trans a, Trans b) =>

Int -> Process a b ->a ->I0b

Explicit communication using primitive operations (monadic)

data ChanName = Comm (Channel a -> a -> I0 ())
createC :: I0 (Channel a , a)

class NFData a => Trans a where

write :: a -> I0 ()
write x = rdeepseq x ‘pseq‘ sendData Data x
createComm :: I0 (ChanName a, a)

createComm = do (cx,x) <- createC
return (Comm (sendVia cx) , x)

Nondeterminism! merge :: [[al] -> [al
Hidden inside a Haskell module, only for the library implementation.
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Outline

@ Skeleton-Based Programming
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The ldea of Skeleton-Basked Parallelism

You have already seen one example:

e (Binary) Divide and Conquer, as a higher-order function

divCongB :: (a -> b) -> a -- base case fct., input
-> (a -> Bool) -- parallel threshold
-> (b => b -> b) -- combine
-> (a -> Maybe (a,a)) -- divide
-> Db

divCongB baseF input doSeq combine divide = ...

(and another version, explained more lated)
e Parallel structure (binary tree) exploited for parallelism

e Abstracted from concrete problem
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The ldea of Skeleton-Basked Parallelism

You have already seen one example:

e (Binary) Divide and Conquer, as a higher-order function

divCongB :: (a -> b) -> a -- base case fct., input
-> (a -> Bool) -- parallel threshold
-> (b => b -> b) -- combine
-> (a -> Maybe (a,a)) -- divide
-> Db

divCongB baseF input doSeq combine divide = ...

(and another version, explained more lated)
e Parallel structure (binary tree) exploited for parallelism

e Abstracted from concrete problem

And another one, much simpler, much more common:
parMap :: (a->b) -> [a] -> [b]
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Algorithmic Skeletons for Parallel Programming

Iteration: divide& conquer (fixed degree):

cogrdinate

Tnput | (stjate) | |Output
deci deEn

Algorithmic Skeletons [Cole 1989]: Boxes and lines — executable!

e Abstraction of algorithmic structure as a higher-order function
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Algorithmic Skeletons for Parallel Programming

Iteration: divide& conquer (fixed degree):

cogrdinate

Tnput | (stjate) | |Output
deci deEn

Algorithmic Skeletons [Cole 1989]: Boxes and lines — executable!

e Abstraction of algorithmic structure as a higher-order function
e Embedded “worker” functions (by application programmer)

e Hidden parallel library implementation (by system programmer)
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Algorithmic Skeletons for Parallel Programming

Master-Worker: Google Map-Reduce:

intermediate

input data

Algorithmic Skeletons [Cole 1989]: Boxes and lines — executable!

e Abstraction of algorithmic structure as a higher-order function
e Embedded “worker” functions (by application programmer)
e Hidden parallel library implementation (by system programmer)

e Different kinds of skeletons: topological, small-scale, algorithmic
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Algorithmic Skeletons for Parallel Programming

Iteration:

cogrdinate

Input *| (stlat e)
deci deEn

out put

divide& conquer (fixed degree):

Algorithmic Skeletons [Cole 1989]: Boxes and lines — executable!

e Abstraction of algorithmic structure as a higher-order function

e Embedded “worker” functions (by application programmer)

e Hidden parallel library implementation (by system programmer)
e Different kinds of skeletons: topological, small-scale, algorithmic

Explicit parallelism control and functional paradigm are a good setting
to implement and use skeletons for parallel programming. @
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Types of Skeletons

Common Small-scale Skeletons

e encapsulate common parallelisable operations or patterns

e parallel behaviour (concrete parallelisation) hidden
Structure-oriented: Topology Skeletons

e describe interaction between execution units

e explicitly model parallelism
Proper Algorithmic Skeletons

e capture a more complex algorithm-specific structure

e sometimes domain-specific
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Outline

©® Small-Scale Skeletons: Map and Reduce
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Basic Skeletons: Higher-Order Functions

e Parallel transformation: Map
map :: (a -> b) -> [a] -> [b]
independent elementwise transformation

... probably the most common example of parallel functional
programming (called "embarassingly parallel")
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Basic Skeletons: Higher-Order Functions

e Parallel transformation: Map
map :: (a -> b) -> [a] -> [b]
independent elementwise transformation

... probably the most common example of parallel functional
programming (called "embarassingly parallel")

e Parallel Reduction: Fold
fold :: (a ->a ->a) >a -> [a] > a

with commutative and associative operation.
e Parallel (left) Scan:

parScanL :: (a -> a -> a) -> [a] -> [a]
reduction keeping the intermediate results.

e Parallel Map-Reduce:
combining transformation and groupwise reduction. @
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Embarassingly Parallel: map

map: apply transformation to all elements of a list

e Straight-forward element-wise parallelisation

parmap :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]
parmap = spawn . repeat . process
-- parmap f xs = spawn (repeat (process f)) xs
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Embarassingly Parallel: map

map: apply transformation to all elements of a list

e Straight-forward element-wise parallelisation

parmap :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]
parmap = spawn . repeat . process
-- parmap f xs = spawn (repeat (process f)) xs

Much too fine-grained!
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Embarassingly Parallel: map

map: apply transformation to all elements of a list

e Straight-forward element-wise parallelisation

(Trans a, Trans b) => (a -> b) -> [a] -> [b]
. repeat .

-- parmap f xs

Much too fine-grained!

e Group-wise processing: Farm of processes

(Trans a, Trans b) => (a -> b) -> [a] -> [b]
join results
where results

distribute

distribute n
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spawn (repeat (process f)) xs

spawn (repeat (process (map f))) parts
distribute noPe xs —-- noPe, so use all nodes

: Int -> [a] -> [[a]]
. distribute n
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Example

Mandelbrot set visualisation z,11 = z,% +cforceC

Mandelbrot (Pseudocode)

pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul lr dimx np s = ppmheader ++ concat (parMap computeRow rows)
where rows = ...dimx..ul..lr..
parMap = ...np..s..
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UNIVERSITY OF COPENHAGEN

Example / Exercise

Mandelbrot set visualisation z,11 = z,% +cforceC

Mandelbrot (Pseudocode)

pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul lr dimx np s = ppmheader ++ concat (parMap computeRow rows)
where rows = ...dimx..ul..lr..
parMap = ...np..s.. -- you define it

Exercise:
o Implement parMap in 2 different ways

e Run the Mandelbrot program with both
versions, compare the behaviour.

Framework programs can be found on the course pages. ..
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Example / Exercise: Chunked Tasks

Mandelbrot set visualisation z,11 = z,% +cforceC

Mandelbrot (Pseudocode)

pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul lr dimx np s = ppmheader ++ concat (parMap computeRow rows)

where rows = ...dimx..ul..lr..
parMap = ..using chunks..
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Example / Exercise: Chunked Tasks

Mandelbrot set visualisation z,11 = z,% +cforceC

Mandelbrot (Pseudocode)

pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul 1lr dimx np s = ppmheader ++ concat (parMap computeRow rows)
where rows = ...dimx..ul..lr..
parMap = ..using chunks..

T3 T2 0 Bs (7 %o z % T3 : 5o 2 )

Simple chunking leads to load imbalance (task complexities differ) .@
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Example / Exercise: Round-robin Tasks

Mandelbrot set visualisation z,11 = z,% +cforceC

Mandelbrot (Pseudocode)

pic :: ..picture-parameters.. -> PPMAscii
pic threshold ul lr dimx np s = ppmheader ++ concat (parMap computeRow rows)
where rows = ...dimx..ul..lr..

parMap = ..distributing round-robin..

B0 LU MR A T O | RO
UL L] TIWORARRIRT (INTNTRITIT Wi

Better: round-robin distribution, but still not well-balanced. @
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Master-Worker Skeleton

Worker nodes transform elementwise:
worker :: task -> result
Master node manages task pool

mw :: Int -> Int ->
(a->b) -> [a] -> [b]
mw np prefetch f tasks =

Parameters: no. of workers, prefetch
e Master sends a new task each time a result is returned
(needs many-to-one communication)
e Initial workload of prefetch tasks for each worker:
Higher prefetch = more and more static task distribution
Lower prefetch = dynamic load balance
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Master-Worker Skeleton

Worker nodes transform elementwise:
worker :: task -> result
Master node manages task pool

mw :: Int -> Int ->
(a->b) -> [a] -> [b]
mw np prefetch f tasks =

Parameters: no. of workers, prefetch

e Master sends a new task each time a result is returned
(needs many-to-one communication)

e Initial workload of prefetch tasks for each worker:
Higher prefetch = more and more static task distribution
Lower prefetch = dynamic load balance

e Result order needs to be reestablished!
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Master-Worker: An Implementation

Master-Worker Skeleton Code

mw np prefetch f tasks = results

where

fromWorkers = spawn workerProcs toWorkers

workerProcs = [process (zip [n,n..] . map f) | n<-[1..np]]
toWorkers = distribute tasks requests

o Workers tag results with their ID (between 1 and np).
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Master-Worker: An Implementation

Master-Worker Skeleton Code

mw np prefetch f tasks = results

where

fromWorkers = spawn workerProcs toWorkers

workerProcs = [process (zip [n,n..] . map f) | n<-[1..npl]
toWorkers = distribute tasks requests

(newRegs, results) = (unzip . merge) fromWorkers
requests = initialReqs ++ newRegs
initialRegs = concat (replicate prefetch [1..np])

o Workers tag results with their ID (between 1 and np).
e Result streams are non-deterministically merged into one stream.
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Master-Worker: An Implementation

Master-Worker Skeleton Code

mw np prefetch f tasks = results

where

fromWorkers = spawn workerProcs toWorkers

workerProcs = [process (zip [n,n..] . map f) | n<-[1..npl]
toWorkers = distribute tasks requests

(newRegs, results) = (unzip . merge) fromWorkers
requests = initialReqgs ++ newRegs
initialRegs = concat (replicate prefetch [1..np])

distribute :: [t] -> [Int] -> [[t]]
distribute tasks reqs = [taskList reqs tasks n | n<-[1..np]]

where taskList (r:rs) (t:ts) pe | pe == r = t:(taskList rs ts pe)
| otherwise = taskList rs ts pe
taskList _ = [

o Workers tag results with their ID (between 1 and np).

e Result streams are non-deterministically merged into one stream.
e The distribute function supplies new tasks according to requests. g
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Parallel Reduction, Map-Reduce

Reduction (fo1a) usually has a direction

® foldl :: (b->a ->b) >b ->[al] > b
foldr :: (a ->b ->b) =>b ->[al] > Db

Starting from the left or right, implying different reduction
function.
e To parallelise: break into sublists and pre-reduce in parallel.

e Better options if order does not matter.
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Parallel Reduction, Map-Reduce

Reduction (fo1a) usually has a direction

® foldl :: (b->a ->b) >b ->[al] > b
foldr :: (a ->b ->b) =>b ->[al] > Db

Starting from the left or right, implying different reduction
function.
e To parallelise: break into sublists and pre-reduce in parallel.

e Better options if order does not matter.

Example: S, (k) = Yy 1j < k | ged(k,j) =1} (Euler Phi)

sumEuler

result = foldl (+) O (map phi [1..n])
phi k = length (filter (\ n -> gcd n k == 1) [1..(k-1)]1)
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Parallel Map-Reduce: Restrictions

® parmapReduceStream :: Int ->
(a->b) > (b ->b->b) >b ->
[al] -> b

parmapReduceStream np mapF redF neutral list = foldl redF neutral subRs
where sublists = distribute np list
subFold = process (foldl’ redF neutral . (map mapF))
subRs = spawn (replicate np subFold) sublists
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Parallel Map-Reduce: Restrictions

® parmapReduceStream :: Int ->
(a->b) > (b ->b->b) >b ->
[al] -> b

parmapReduceStream np mapF redF neutral list = foldl redF neutral subRs
where sublists = distribute np list
subFold = process (foldl’ redF neutral . (map mapF))
subRs = spawn (replicate np subFold) sublists

e Associativity and neutral element (essential).
e commutativity (desired, more liberal distribution)
e need to narrow type of the reduce parameter function!

e ...Alternative fold type: redF’ :: [b] -> b
redF’ [1 = neutral
redF’ (x:xs) = foldl’ redF x xs
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Google Map-Reduce: Grouping Before Reduction

gMapRed :: (k1 -> vi -> [(k2,v2)]) -- mapF
-> (k2 -> [v2] -> Maybe v3) -- reduceF
-> Map ki vl -> Map k2 v3 -- input / output
intermediate
data groups output data

reducef k(——C_______>
reduceF k(z)_.@

input data

—

@ Input: key-value pairs (k1,v1), many or no outputs (k2,v2)

reduceF K(j )—‘Q
reduceF k(n)—>©

® Intermediate grouping by key k2
©® Reduction per (intermediate) key k2 (maybe without result)
® Input and output: Finite mappings
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Google Map-Reduce: Grouping Before Reduction

gMapRed :: (k1 -> vi -> [(k2,v2)]) -- mapF
-> (k2 -> [v2] -> Maybe v3) -- reduceF
-> Map ki vl -> Map k2 v3 -- input / output
intermediate
data groups output data
reducef k(——C_______>
input data
reduceF k(z)_.©
nepF :
reduceF k(])—‘©
reduceF k(n)—-©
(uRL,document) == [(word,1)] == (word :-> count)

Word Occurrence

mapF :: URL -> String -> [(String,Int)]

mapF _ content = [(word,1) | word <- words content ]

reduceF :: String -> [Int] -> Maybe Int

reduceF word counts = Just (sum counts) @
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Google Map-Reduce (parallel)

input partitioned distributed
data input m Mapper intermediate
data Processes data (groups)
[T}
= | N Reducer distributed
m]a-p Processes output data

R.Lammel, gMapRed :: Int -> (k2->Int) -> Int -> (vi->Int) -- parameters
ﬁ]‘mg'ssd (k1 -> v1 -> [(k2,v2)]) -- mapper

ap-Reduce

Pm’;ram_u -> (k2 -> [v2] -> Maybe v3) -- pre-reducer
ming  Model -> (k2 -> [v3] -> Maybe v4) -- final reducer @
Revisited. - - —_—
I eCP 2008 > Map k1 vl -> Map k2 v4 input / output ®

'Y
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Examples / Exercise

gMapRed :: Int -> (k2->Int) -> Int -> (vi-

(k1 -> v1 -> [(k2,v2)]) -
-> (k2 -> [v2] -> Maybe v3) --
-> (k2 -> [v3] -> Maybe v4) --
-> [(k1,v1)] -> Map k2 v4 --

DEPARTMENT OF COMPUTER SC

>Int) -- parameters
mapper

pre-reducer

final reducer
input / output

Describe how to compute the following in Google Map-Reduce:

e Reverse Web-Link Graph:

For a set of URLs, compute a dictionary to enable looking up all pages that link to one

particular page.

e URL Access Frequencies:

Compute the access count for all URLs in a web server log file.

Slide 27/37 — J.Berthold — Eden — Chalmers, 04/2013




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIEN

Examples / Exercise

gMapRed :: Int -> (k2->Int) -> Int -> (vi->Int) -- parameters
(k1 -> v1 -> [(k2,v2)]) -- mapper
-> (k2 -> [v2] -> Maybe v3) -- pre-reducer
-> (k2 -> [v3] -> Maybe v4) -- final reducer
-> [(k1,v1)] -> Map k2 v4 -- input / output

Describe how to compute the following in Google Map-Reduce:
e Reverse Web-Link Graph:

For a set of URLs, compute a dictionary to enable looking up all pages that link to one
particular page.

Reverse Link

Input are all URLs and page contents of the set. The map function outputs pairs (link
target, source URL) for each link found in the source URL contents. The (pre-)reduce
function joins the source URLs to the pair (target, list(source)) (removing duplicates).

e URL Access Frequencies:
Compute the access count for all URLs in a web server log file.

URL Access Frequency

Input are all log entries, stating the requested URLs. As in word-occurrence: The map
function emits (URL,1) pairs for requested URLSs, the reduce functions sum the counts. )
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Outline

O Process Topologies as Skeletons
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Process Topologies as Skeletons: Explicit Parallelism

e describe typical patterns of parallel interaction structure
e (where node behaviour is the function argument)

e to structure parallel computations

Examples:
Pipeline/Ring: Master /Worker: Hypercube:
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Process Topologies as Skeletons: Explicit Parallelism

e describe typical patterns of parallel interaction structure
e (where node behaviour is the function argument)

e to structure parallel computations

Examples:
Pipeline/Ring: Master /Worker: Hypercube:

= well-suited for functional languages (with explicit parallelism).
Skeletons can be implemented and applied in Eden.
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Process Topologies as Skeletons: Ring

RlngSk§I J—"0

R

type RingSkel i o a b r = Int -> (Int -> i -> [a]) -> ([b] -> o) —>
((a, [r]) > (b,[r])) > i >0

ring size makeInput processOutput ringWorker input = ...

e Good for exchanging (updated) global data between nodes

e All ring processes connect to parent to receive input/send output
e Parameters: functions for

e decomposing input, combining output, ring worker @
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Process Topologies as Skeletons: Torus

torus ::
-- node behaviour
(c->[al->[b] -> (4,[a],[b])) ->
-- input (truncated to shortest)
[[cl] -> [[d]] -- result

e [nitialisation data [[c1]

e Ring-shaped neighbour communication in two dimensions

Slide 31/37 — J.Berthold — Eden — Chalmers, 04/2013




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Process Topologies as Skeletons: Torus

torus ::
-- node behaviour
(c->[al->[b] -> (4,[a],[b])) ->
-- input (truncated to shortest)
[[cl] -> [[d]] -- result

e [nitialisation data [[c1]

e Ring-shaped neighbour communication in two dimensions

o Application: Matrix multiplication

AB
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Process Topologies as Skeletons: Torus

torus ::
-- node behaviour
(c->[al->[b] -> (4,[a],[b])) ->
-- input (truncated to shortest)
[[cl] -> [[d]] -- result

e [nitialisation data [[c1]

e Ring-shaped neighbour communication in two dimensions

o Application: Matrix multiplication
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Process Topologies as Skeletons: Torus

torus ::
-- node behaviour
(c->[al->[b] -> (4,[a],[b])) ->
-- input (truncated to shortest)
[[cl] -> [[d]] -- result

e [nitialisation data [[c1]

e Ring-shaped neighbour communication in two dimensions

o Application: Matrix multiplication
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Process Topologies as Skeletons: Torus

torus ::
-- node behaviour
(c->[al->[b] -> (4,[a],[b])) ->
-- input (truncated to shortest)
[[cl] -> [[d]] -- result

e [nitialisation data [[c1]

e Ring-shaped neighbour communication in two dimensions

o Application: Matrix multiplication

f (B\L Al é;!
Bl +AB.1
N

U

{
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Outline

@ Algorithm-Oriented Skeletons: Two Classics
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Two Algorithm-oriented Skeletons

e Divide and conquer

divCon :: (a -> Bool) -> (a -> b) -- trivial? / then solve
-> (a -> [a]) —> ([b] -> b) -- split / combine
->a->b -- input / result

e lteration
iterateUntil :: (inp -> ([ws],[t],ms)) -> -- split/init function
(t -> State ws r) -> -- worker function
([r] -> State ms (Either out [t])) -- manager function

-> inp -> out

. coardinate
Tnput | (stlate) | |OUtPUt

deci deEn

AN
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Divide and Conquer Skeletons

e General version: no assumptions on problem characteristics

divCon :: (a -> Bool) -> (a -> b) -- trivial? / then solve
-> (a -> [a]) -> ([b] -> b) -- split / combine
->a->b -- input / result

divCon trivial solve split combine = ...

e Implementation will make (parallel?) recursive calls to itself (with
same parameters as the initial call).
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Divide and Conquer Skeletons

e General version: no assumptions on problem characteristics

divCon :: (a -> Bool) -> (a -> b) -- trivial? / then solve
-> (a -> [a]) -> ([b] -> b) -- split / combine
->a->b -- input / result

divCon trivial solve split combine = ... -- you write one

e Implementation will make (parallel?) recursive calls to itself (with
same parameters as the initial call).

Exercise:

e Implement this general divide-and-conquer version.
Write a sequential version first, then make recursive calls parallel.
Add one 1nt parameter to limit the parallel depth.
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[teration Skeleton

e Fixed set of workers

e Lock-step execution,
solving a set of tasks

e Manager decides end

iterateUntil :: (inp -> ([ws],[t],ms)) ->
(t -> State ws r) ->

DEPARTMENT OF COMPUTER SCIEN

coardinate =Tt
input | (stlat e) out pu
deC|deEn

-- split/init function
-- worker function

([r] -> State ms (Either out [t])) -- manager function

-> inp -> out

Worker: computes result r from task t

using and updating a local state ws

Manager: decides whether to continue,
based on master state ms and all worker results.

produce tasks for all workers
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Outline

® Summary
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Summary

e Eden: Explicit parallel processes, mostly functional face
e Two levels of Eden: Skeleton implementation and skeleton use

o Skeletons: High-level specification exposes parallel structure
e and enables programmers to think in parallel patterns.

e Different skeleton categories (increasing abstraction)

e Small-scale skeletons (map, fold, map-reduce, ...)
e Process topology skeletons (ring, torus...)
o Algorithmic skeletons (divide & conquer, iteration)
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Summary

Eden: Explicit parallel processes, mostly functional face

Two levels of Eden: Skeleton implementation and skeleton use

o Skeletons: High-level specification exposes parallel structure
e and enables programmers to think in parallel patterns.

Different skeleton categories (increasing abstraction)

e Small-scale skeletons (map, fold, map-reduce, ...)
e Process topology skeletons (ring, torus...)
o Algorithmic skeletons (divide & conquer, iteration)

More information on Eden:

http://www.mathematik.uni-marburg.de/~eden
(http://hackage.haskell.org/package/edenskel/)
(http://hackage.haskell.org/package/edenmodules/)
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