
Study Guide (Version 2)

Parallel Functional Programming

Chalmers

Mary Sheeran

May 26, 2013

Abstract

This brief guide aims to help you structure your study of parallel
functional programming, relying on the material linked to on the course
home page. The course covered quite a few topics and had many guest
lectures. Here, we try to point to the important topics and stress the
important ideas, not only for the immediate task of passing the exam,
but also for your longer term learning and enjoyment. Dislaimer: This
is an experiment! I can’t guarantee that I have not forgotten something
important. Feedback and tips are welcome! I have linked to a couple of
your submitted tutorials and I may add more. So I will just have to keep
tweaking this document. Good luck!

The single sentence that has been added to Version 1 is highlighted in
red.

1 Introduction

The first thing to note is that we (the examiners) are, believe it or not, actually
serious about the course Aim, Syllabus and Learning Outcomes! They are on
the main course page and are reproduced here:

1.1 Aim

The aim of the course is to introduce the principles and practice of parallel
programming in a functional programming language. By parallel programming,
we mean programming using multiple hardware cores or processors in order to
gain speed. The course covers approaches to parallel functional programming in
both Haskell and Erlang. It covers current research on these topics, and relies
heavily on scientific papers as its source materials.

1

http://www.cse.chalmers.se/edu/course/pfp/


1.2 Syllabus

• The course covers the principles and practice of parallel programming in
both Haskell and Erlang.

• Advantages of functional approaches to parallelism: immutability, absence
of data races, determinism.

• Profiling parallel functional programs: granularity, bottlenecks, locality,
data-dependencies.

• Parallel functional algorithms: divide-and-conquer.

• Approaches to expressing parallelism in Haskell: the Eval monad, the Par
monad, parallel strategies, skeletons, data parallelism.

• Functional approaches to GPU programming

• Parallelisation and distribution for Erlang. Scalability. Handling errors in
a massively parallel system.

• Case studies of industrial parallel functional programming, such as map-
reduce and scalable no-SQL databases.

• Guest lectures by leading researchers and practitioners.

1.3 Learning Outcomes

• Knowledge and understanding

– Distinguish between concurrency and parallelism.

– Give an overview of approaches to parallelism in functional program-
ming languages in the scientific literature.

Skills and abilities

• – Write, modify and test parallel functional programs, to run on a vari-
ety of architectures such as shared memory multiprocessors, networks
of commodity servers, and GPUs.

– Interpret parallelism profiles and address bottlenecks.

• Judgement and approach

– Identify when using a functional language may be appropriate for
solving a parallel programming problem.

– Select an appropriate form of parallel functional programming for a
given problem, and explain the choice.

2



2 Last year’s exam

First, reassure yourself by looking at last year’s exam. As you can see, it does
not contain surprises or tricky questions. Also, it reflects the above learning
outcomes pretty closely!

This year, there will be a question or part question about Obsidian (which
was not covered in the 2012 version of the course). Oh, and cache complexity
is also a new topic for this year (see section 3.6).

3 A possible study plan

3.1 Motivation, determinism, purity etc.

Look through the slides of lecture 1 the first lecture, which motivates the whole
course and the advantages of choosing a purely functional approach. John makes
the importance of immutable data pretty clear :) Note how important it is to
control task granularity. The idea of introducing a depth parameter to control
granularity appears first in this lecture and then a few times later on. You
probably got told about this by Nick in his comments on the first lab too. At
this point, it would be a good idea to look at your first lab and the comments
you got on it, and think about the control of granularity. The first three sec-
tions of Simon Marlow’s lecture notes also fit well here. Note the discussion of
data dependencies at the end of section 3. Also, Marlow distinguishes between
concurrency and parallelism in exactly the way that we want to.

3.2 Threadscope and the like

Remind yourself, too, about how to use +RTS -s and Threadscope to investigate
the effects of getting the granularity wrong or of having sequential blocks that
ruin your parallel performance (see Amdahl’s law at the end of lecture 1). An-
dres Löh’s slides from 2012 give a useful summary of the most usual pitfalls in
parallelising functional code and of how to investigate problems (even without
being able to see the Threadscope Demo that he did live in 2012).

3.3 Haskell’s palette of methods

Next, you need to consider the sequence of approaches to deterministic parallel
(multicore) programming in Haskell (par and pseq, strategies, the Eval and Par
Monads, and Repa). Look at the slides for lecture 2, lecture 3 and lecture 9.
Read the papers (the two strategies papers, the Par monad paper and two Repa
papers), paying attention to the advantages and disadvantages of the various
approaches. Simon Marlow’s notes are again very useful (sections 4 to 6). This
tutorial about Repa by Eddeland and Söderlund from this year’s class captures
Repa nicely. Students in the class have also contributed informative tutorials
about the par monad and about strategies. Data Parallel Haskell was also
mentioned in lecture 9. For now, we consider that it is not quite ready for the

3

http://www.cse.chalmers.se/edu/course/pfp/exam12.pdf
http://www.cse.chalmers.se/edu/course/pfp/lectures.html#lecture1
http://community.haskell.org/~simonmar/par-tutorial-cadarache.pdf
http://www.well-typed.com/Chalmers/Presentation.pdf
http://www.well-typed.com/Chalmers/Presentation.pdf
http://www.cse.chalmers.se/edu/course/pfp/lectures.html#lecture2
http://www.cse.chalmers.se/edu/course/pfp/lectures.html#lecture3
http://www.cse.chalmers.se/edu/course/pfp/lectures.html#lecture9
http://community.haskell.org/~simonmar/par-tutorial-cadarache.pdf


big time, and this is confirmed by this (long) tutorial by Lypai, Katelaan and
Blöndal. Maybe next year...

Look at your lab work that uses the various approaches. How would you
argue for any of these approaches if asked to advise on their use in a real project?
And what are the downsides of these approaches, both those stated in the papers
and those that you have experienced in practice?

Obsidian is a bit different, both because it is local and very much under
development and because it is for GPU programming. Look at the slides for
lectures 5 and 6. It is the user’s perspective that we want you to concentrate
on. What can the user control? Again, look back at your lab work and Joel’s
comments.

3.4 Parallel Patterns, Skeletons, Divide and Conquer

The invited lectures by Hammond and Berthold introduce the idea of parallel
patterns or skeletons. Hammond argues for a lightweight approach built on par

and pseq, while Berthold presents Eden, with its “pragmatically impure” notion
of explicit processes for coordination. Berthold presents the idea of skeletons as
an abstraction of algorithmic structure as higher order functions, with embedded
workers contributed by the application programmer and a hidden parallel library
implementation done by the system programmer. Divide and Conquer features
heavily in a variety of approaches (see for example the “Better Strategies” paper
from Haskell’10 as well as the above invited lectures). Jean-Philippe’s lecture
on parallel and incremental parsing was also a lovely use of Divide and Conquer!
Study this pattern, particularly if you did not make the choice to use it in Lab
A. And parMap is ubiquitous, coming up nearly everywhere! It is probably the
most commonly used pattern (even in the real world, as Lennart Augustsson
told us).

3.5 Data Parallelism

The distinction between task and data parallelism came up several times, and
lectures 8 and 9 were devoted to data parallelism. This includes DPH and Repa
(mentioned before). This section of the course is mainly devoted to the ideas of
Blelloch, which you will also have explored in Lab C. Read as much as you can
about Blelloch’s notions of work and depth, making use of the links that appear
in the notes for lecture 8. Maybe watch Blelloch’s invited talk from ICFP’10?
You can’t read Blelloch’s work without coming across parallel scan and why it
is important. Be prepared to analyse small example algorithms for work and
depth (as you did in Lab C). Besides work and depth, the other important idea
to note is the distinction between flat and nested data parallelism, which comes
up both in Blelloch’s work and (for instance) in the arguments for why DPH is
interesting (and also difficult to make work).

4

http://www.cse.chalmers.se/edu/course/pfp/lectures.html#lecture5
http://www.cse.chalmers.se/edu/course/pfp/lectures/lecture4/Lecture4.pdf
http://www.cse.chalmers.se/edu/course/pfp/lectures/lecture4/Lecture4.pdf
http://www.cse.chalmers.se/edu/course/pfp/Papers/strategies10.pdf
http://www.cse.chalmers.se/edu/course/pfp/lectures.html#lecture14
http://www.cse.chalmers.se/edu/course/pfp/lectures.html#lecture14
http://www.cse.chalmers.se/edu/course/pfp/lectures.html#lecture8
http://vimeo.com/album/1468571/video/16541324
http://www.cse.unsw.edu.au/~chak/papers/fsttcs2008.pdf


3.6 Caches

You have just seen Nick’s lecture, viewing cache complexity as a further step
beyond the simple notions of work and depth. Nick’s advice is to read Prokop’s
MSc thesis (the second ref. on the final slide of the lecture). Nick says it is an
easier read with more examples than the classic papers about Cache-oblivious
algorithms by Frigo and others (including Prokop). So, first read section 7 of
Prokop’s thesis, and then sections 2 and 3.

3.7 Erlang, Fault Tolerance

And then there is the Erlang part of the course, about which I know less than
I should! But here the revision strategy seems to be less complicated. Look at
the slides from John’s lectures and from the invited lecturers. Probably your
lab work in Erlang is very fresh in your mind... What distinguishes the Erlang
approaches from those that you saw in the Haskell part of the course?

3.8 Your opinion

It is important to think about your experiences with programming using the
various approaches presented in the course. We expect you to have personal
opinions based both on your own experience and on what you have read.

In order to try to improve the course for next year, we have added extra
questions to the usual Chalmers questionnaire (working with the class reps).
Please please fill in the questionnaire. Or if you prefer, just send a mail to
Mary, Nick or John with ideas and concrete suggestions.

3.9 What Next?

The course is hopefully about more than just passing the exam. To keep up with
developments in topics related to the course, look for the following conferences
and workshops in the ACM Digital Library: ICFP and the Haskell Symposium
(which should be familiar by now), the Erlang Workshop, DAMP (Declarative
Aspects of Multicore Programs) and CUFP (Commercial Users of Functional
Programming). There is also a new arrival on the scene, FHPC (Functional High
Performance Computing). On the Erlang side, both the Erlang User Conference
(usually in Stockholm) and Erlang Factory are good sources of tips if you want
to work with Erlang.

If all of this makes you wonder, even vaguely, about a Masters Thesis project
in this area, talk to Mary or John. We can set you up with a project and
supervisor tailored to your interests. We may also be able to help with finding
PFP related projects in industry. If the course has made you interested in
research, we will be happy to talk to you about that too, and to help you make
contacts within the department or in other places. We are very well connected.
Don’t hesitate to contact us!

5

http://ocw.raf.edu.rs/courses/electrical-engineering-and-computer-science/6-895-theory-of-parallel-systems-sma-5509-fall-2003/readings/cach_oblvs_thsis.pdf
http://ocw.raf.edu.rs/courses/electrical-engineering-and-computer-science/6-895-theory-of-parallel-systems-sma-5509-fall-2003/readings/cach_oblvs_thsis.pdf
http://www.erlang-factory.com/

	Introduction
	Aim
	Syllabus
	Learning Outcomes

	Last year's exam
	A possible study plan
	Motivation, determinism, purity etc.
	Threadscope and the like
	Haskell's palette of methods
	Parallel Patterns, Skeletons, Divide and Conquer
	Data Parallelism
	Caches
	Erlang, Fault Tolerance
	Your opinion
	What Next?


