
Obsidian and CUDA programming
Parallel Functional Programming Lab B

Bo Joel Svensson Mary Sheeran

April 15, 2013

1 Introduction
This lab consists of 5 tasks. Make sure you have completed all of them. The lab also has 6 voluntary
exercises. You are free to do any, all or none of these. However, select one or two of the voluntary exercises
for serious treatment if you plan to approach us for a potential master thesis related to functional GPU
programming.

If you have questions or problems during this lab, do not hesitate to contact me at joels@chalmers.se.

1.1 How to report this lab
Hand in all your code and a short written report with answers to question that are not easily answered as
code or comments. The report and all source code should be submitted using the FIRE system
https://fire.cs.chalmers.se:8069/cgi/Fire-pfp.

1.2 Learning objectives
This lab is about GPU programming. It will serve as an introduction to CUDA programming. CUDA is
NVIDIA’s C dialect for data parallel programming of their GPUs1. The level of the CUDA introduction
is aimed to suit someone who has never seen a CUDA program before. The lab then introduces you to a
library called Obsidian that is currently being actively developed and in a constant state of flux. From this
we hope you take with you an appreciation for the embedded language approach to tackling the challenges
of new and peculiar emerging parallel hardware.

2 Programming in CUDA
The purpose of this part of the lab is to become familiarised with CUDA and the nvcc compiler. We are
going to implement a simple CUDA program. A CUDA program consists of kernels, programs that run on
the GPU, and glue code that runs on the CPU.

The role of the glue code is to launch computations on the GPU and to coordinate the transfer of data
and allocation of memory.

What you have heard about CUDA in the lecture should be enough to complete these tasks but if you
want to go deeper into details, look at the CUDA programming manual [1]. For each CUDA programming
task, create a file taskX.cu where X is the number of the task you are implementing.

Now it is time to write a small kernel and then get it running on the GPU.

1www.nvidia.com/CUDA

1

Task 0: Element-wise addition and glue code
Implement a kernel for element-wise addition of vectors. To get started you may use the template

presented below.

__global__ void vecAdd(float *v1, float *v2, float *r){
unsigned int gtid = blockIdx.x * blockDim.x + threadIdx.x;

r[gtid] = ...
}

Now implement the CUDA code that launches the computation on the GPU. A skeleton of this glue code
is given in the slides for lecture 5. It needs to be adapted for the this particular experiment though. The
task is to adapt the glue code to execute the kernel from the previous task or to write your very own glue
code.

Task 1: Data generation and timing
Generate input data of various sizes and add code to take timing measurements of the kernel’s execution.

Try to set up the timing code so that only the execution of the CUDA kernel is timed, not the data transfer
or any computation you perform on the CPU (such as data generation). Keep in mind the scale of parallelism
on the GPU when designing your timing experiments.

There are tools you can use that performs very much more interesting timing for you. One example is
the CUDA profiler. If you decide to use the CUDA profiler or any other method for timing, specify your
approach in the report

Voluntary 0: An experiment of your own
The kernel implemented above is very small and uses no shared memory or communication between

threads. This voluntary task is left very open. You may implement any algorithm you want but try to
explore the effects of introducing shared memory. Potential starting points are

• Reduction (for example sum or product).

• Linear algebra operations

– saxpy
A Haskell specification of saxpy is
saxpy (a :: Float) = zipWith (\x y -> a * x + y)

– Matrix multiplication
mm xxs yys = [[sum (zipWith (*) xs ys)|ys <- transpose yys] | xs <- xxs]

• Image processing (Blur or other stencil operations)

• Anything.

For inspiration you can also look at some of the papers by the Chalmers graphics research group [6, 2].
They are really pushing the envelope of GPU coding.

3 Programming in Obsidian
Obsidian is work in progress and the version of it that is presented to you here has very recently gone through
some major revisions. Be patient with any bugs you discover. Actually we would be very grateful if you
make note of any bugs you find in your report.

In this part of the lab you will write both Obsidian and CUDA code. Each task entails generating some
CUDA code from Obsidian code and the implementation of CUDA glue code to launch it. Place all CUDA

2

code and generated kernels in files named taskX.cu as before. The Haskell code can be implemented in the
provided template, LabB.hs. This template is available on the course web page.

Task 2: Reimplement vector addition
As a warm up exercise, reimplement vecAdd in Obsidian. Generate the CUDA code and execute it using

the glue code created earlier in this lab.

Task 3: Reduction
This task is to implement reduction in Obsidian. Reduction operations take arrays as input and produces

a single value, think of Haskell’s foldl1 for example. You may chose to implement a general reduction
combinator or to reduce for a specific operation (such as +). Your local reduction kernel should be able to
reduce arrays that have a length that is a power of two. Use a divide and conquer approach: repeatedly split
the array in half use zipWith (+) on the halves (if + was chosen as the operator).

Task 4: Implement dot product
Implement dot product in Obsidian.

a · b =

n∑
i=0

ai ∗ bi = a0b0 + a1b1 + . . .+ anbn

Dot product is a combination of an element-wise operation and a reduction. We suggest that you imple-
ment these as two separate kernels. The two previous tasks can be used as inspiration here. When it comes
to writing the CUDA code, you must set it up to first launch the element-wise product kernel followed by
the reduction kernel.

This concludes the obligatory part of the lab.

Voluntary 1: Single-kernel dot product
Reimplement dot product but using only a single kernel.

Voluntary 2: Implement matrix multiplication
Implement matrix multiplication for fixed (static) size matrices in Obsidian.

Voluntary 3: Experiment of your own
Go above and beyond what is specified in the Obsidian tasks. Be clever and see what happens. Use

shared memory. You can also here try to implement your favourite data parallel algorithm.

Voluntary 4: Bug hunting
Did you find any bugs while working with Obsidian? If you have been experimenting outside of the

borders of this lab assignment, it is very likely that you have. Pointing them out makes us grateful but
proposing constructive insights on how to fix them merits you greatly.
Possible bugs you can discover are:

• Wrong CUDA code is generated. That is, the generated code does not correspond with your intuition
of what the Obsidian represents.

• Missing class instances, type family instances etc.

• Missing cases in any of the compilation passes.

3

Voluntary 5: Propose an extension
This voluntary task is about proposing an extension. Suggest propositions should not just be “add X” or

“do Y instead of Z”, they should be feasible and thought out ideas with a sketch of an implementation plan.
This does not need to be so detailed as to include any actual code, though.

One possible direction is to use Obsidian as a code generating back-end for some a DSL specialised to
narrower domain. An example of such an approach is [4].

For inspiration you can also look at the references [3, 5], that describe Obsidian.

Good Luck and have fun!

4 Hints

4.1 About array sizes
In the current version of Obsidian an array may have either a static or a dynamic length. This is controlled
by the first type parameter to a Pull. If it is a Pull Word32 a array, the length is static and if it is Pull
EWord32 a it is dynamic. The general guideline is that local computations should be performed with static
lengths. This enables the code generator to figure out things like number of threads needed and amount of
shared memory required.

To make the types a little bit cleaner aliases exist

type SPull = Pull Word32
type DPull = Pull EWord32

and similarly for push arrays.

type SPush t a = Push t Word32 a
type DPush t a = Push t EWord32 a

4.2 Useful Obsidian library function
• force :: SPull a -> BProgram (SPull a)

• force :: SPush Block a -> BProgram (SPull a)

• halve :: ASize l => Pull l a -> (Pull l a, Pull l a)

• mapG :: ASize l
=> (SPull a -> BProgram (SPull b))
-> Pull l (SPull a) -> Push Grid l b

• mkPullArray :: s -> (Exp Word32 -> a) -> Pull s a

• replicate :: s -> a -> Pull s a

• zipWith :: ASize l => (a -> b -> c) -> Pull l a -> Pull l b -> Pull l c

• zipWithG :: ASize l
=> (SPull a -> SPull b -> BProgram (SPull c))
-> Pull l (SPull a) -> Pull l (SPull b) -> Push Grid l c

4

References
[1] CUDA programming manual. http://docs.nvidia.com/cuda/cuda-c-programming-guide/.

[2] Markus Billeter, Ola Olsson, and Ulf Assarsson. Efficient stream compaction on wide SIMD many-core
architectures. In Proceedings of the Conference on High Performance Graphics 2009, HPG ’09, New
York, NY, USA, 2009. ACM.

[3] Koen Claessen, Mary Sheeran, and Bo Joel Svensson. Expressive Array Constructs in an Embedded
GPU Kernel Programming Language. In Proceedings of the 7th workshop on Declarative aspects and
applications of multicore programming, DAMP ’12, 2012.

[4] A. Cole, A. McEwan, and G. Mainland. Beauty And The Beast: Exploiting GPUs In Haskell, 2012.

[5] Joel Svensson. Obsidian: GPU Kernel Programming in Haskell. Technical Report 77L, Computer Science
and Enginering, Chalmers University of Technology, Gothenburg, 2011. Thesis for the degree of Licentiate
of Philosophy.

[6] Ola Olsson, Markus Billeter, and Ulf Assarsson. Clustered deferred and forward shading. In Proceedings of
the Fourth ACM SIGGRAPH / Eurographics conference on High-Performance Graphics, EGGH-HPG’12.
Eurographics Association, 2012.

5

