
Model-Based Testing
(DIT848 / DAT260)

Spring 2013
Lecture 14
Revision

Gerardo Schneider
Department of Computer Science and Engineering

Chalmers | University of Gothenburg

1

Revision requests…

  Go through a previous exam

  A more complex example of ModelJUnit where the
adapter is separated from the model

2

Exam MBT
Disclaimer!

  Note that the following is only a sample of a previous
exam!

  The precise content or format of the incoming exam
might be slightly different!

3

Exam MBT (General issues)
  ALLOWED AID:

  Books on testing
  All lecture notes (including printouts of lectures’ slides)
  Students own notes
  English dictionary
  NOT ALLOWED: Any form of electronic device

(dictionaries, agendas, computers, mobile phones, etc)

4

Exam MBT (General issues)
  PLEASE OBSERVE THE FOLLOWING:

  Motivate your answers (a simple statement of facts not
answering the question is considered to be invalid);

  Start each task on a new paper;
  Sort the tasks in order before handing them in;
  Write your student code on each page and put the number of

the task on every paper;
  Read carefully the section below “ABOUT THE FORMAT OF

THE EXAM”.

5

Exam MBT (General issues)
  ABOUT THE FORMAT OF THE EXAM:

  The exam consists of 5 tasks, each one concerned with a
specific part of the course content.

  Each task is worth 20 points. In order to reach the level to
pass with 3 (G) you need at least 50 points out of the total,
and at least 6 points per task. To pass with 4 you need at
least 65 points out of the total, and at least 8 points per
task.

  In order to pass with distinction (5/VG) you need to reach
at least 80 points out of the total, and you must score at
least 14 points per task.

  IMPORTANT: Note that you should have a minimum
number of points per task in order to pass, so avoid
letting unanswered tasks. 6

Exam MBT – May 21, 2012

  MBT-exam-2012-05-21.pdf

7

Task 1 -Test in general
Part 1

Solution

1. F – testing is always dynamic

2. T

3. F – debugging is testing + correcting the errors

4. F – This is the less advisable way to do it, according to
many experts

5. F – No, you don’t need a full implementation (you might
use some mock code)

10 min
8

Task 1 -Test in general
Part 2

10 min
9

Solution:

1. Acceptance test (g) (also during system test - e)

2. stress/system test (e) and also acceptance (g)

3. Combination of coverage analysis (c) and unit tests (b)

4. timing response test (system test - e)

5. configuration test (system test - e)

Some remarks:

  Many other solutions depending on how much do you abstract
  A ”good” solution should be abstract enough as to capture the informal description (but

not too much as to be useless)

  ”logout” could be eliminated (as it is automatic)

  No check on whether login is correct or not (not in the specification)

  Implicit loop in state ”C” on ”look_for_provider”

Task 2 -State Machines
Part 1

Proposed Solution

A

H

D

logout

F

E

C B
login ask_for_ride

communicate_demander

provider_not found

G
send_sms_provider send_sms_demander

logout

10
7 min

  Test cases you can extract:
1.  After login if there is provider then the demander gets an

sms indicating that.
2.  If no provider exists for that ride then the user is logged

out after getting a notification.

  Test cases you cannot extract:
1.  If a provider does exist for the ride, the user may still not

get the guarantee of a ride due to overbooking.
2.  Any timing constraints in what concerns how much time to

wait for getting a confirmation of a ride.
11

Task 2 -State Machines
Part 2 Proposed Solution

5 min

Some remarks:

  Brackets (”[.]”) are used as a short for ”If ... then …”

  t: timer; c: number of times a demander may request a ride; p: nr of passengers
(stored in the DB; get using ”get_p”)

  Assumption: the timer is automatically incremented (implicit loop in state E)

A

J

D

[t=30]

F

E

C B
login

c:=0

[c<=5] put_in_queue ; t:=0

provider_not found; c:=c+1

G

sms_provider

[p>=4] communicate_demander

provider_found; get_p
logout

ask_for_ride

logout
I H

sms_demander

[c>5] logout

[p<4] p:=p+1

12

Task 2 -State Machines
Part 3 Proposed Solution

10 min

Task 3 –White box testing and coverage
Part 1

15 min
13

Solution

a.  a-b-g

b.  (Considering the state as being
between the transitions)
s1: d-a, d-e
s2: a-b, a-c
s3: c-d, g-d
s4: e-g, e-f, b-g, b-f, f-f, f-g

c.  e
a-b,
a-c-d-e,
e-g-d-e
a-b-g-d-e

d.  Add to the above
visiting “f” too

e.  a-b-g-d-e-f,
a-c-d-e

Task 3 –White box testing and coverage
Part 2

15 min
14

Solution

a.  Deterministic (i), initially connected (ii), minimal (iii),
strongly connected (iv)

b.  Add copies of transitions a, g, d
(e.g: a-c-d-e-f-g-d’-a’-b-g’-d’’)

c.  Transform the graph using de Brujin’s algorithm (dual
graph) and then ”Eulerize” it (see lecture 7)

Task 4 –MBT / ModelJUnit

15 min
15

Solution

1.  F – you should aim at least at
a 100% transition coverage

2.  F – You might use
transformation and
adaptation.

3.  F – you might need to change
the code

4.  F – this is the case for the
transformation, not the
adaptation

5.  T

6.  T

7.  T

8.  T

9.  F – It doesn’t as there
might be many branches in
the SUT abstracted away
in the EFSM

10. F – Transition-based is
control oriented, while
pre/post is data-oriented.

Task 5 – Property-based test. and QuickCheck
Part 1

20 min
16

Solution

a.  prop_delete1 x t =
 delete x (delete x t) == delete x t

b.  prop_delete2 x t = not (member x t) ==>
 flatten (delete x (insert x t)) == flatten t

(Note that the it is not necessarily true that you get the same tree!)

c.  prop_delete3 x t = (member x t) ==>
 (flatten (insert x (delete x t)) == flatten t)
(Note that the it is not necessarily true that you get the same tree!)

d.  (The statement should be read as “Write a property that checks that
2 BSTs are not equal if they don’t contain the same elements.”)
prop_equal t1 t2 =
 not (flatten t1 == flatten t2) ==> t1 /= t2

* Thanks to Grégoire Détrez for finding and fixing some bugs on a
previous solution

Task 5 – Property-based test. and QuickCheck
Part 2

20 min
17

Solution

a.  F – you write properties, not necessarily a full model.

b.  T

c.  F – There is no guarantee of getting the same tree. You
should write:
prop_merge1 x y t1 t2 = flatten (merge (insert x t1)
(insert y t2)) == flatten (insert x (insert y (merge t1 t2)))

d.  F - The problem is that the symbols < and > are
interchanged. You should make the following change:
“&& all (<y) (flatten lt) && all (>y) (flatten rt)”

2nd request…

  An example on how to write a model and (separated)
adapter of a calculator may be found here (by your
colleague Erik Lindqvist):

CalcAdapter.java

CalcFsm.java

18 * Thanks to Erik for sharing his solution!

Exam

  June 1st, at 08:30 (Lindholmen)
  Note time was changed (by Study Administration)

19

