
Model-Based Testing 
(DIT848 / DAT260) 

Spring 2013 
Lecture 11  

Property-Based Testing: QuickCheck 
 
 

Gerardo Schneider 
Department of Computer Science and Engineering 

Chalmers | University of Gothenburg 
 
 
 

1 



Summary of previous lecture 

  Incremental development of an EFSM for a calculator 

  Different ways to obtain executable tests for MBT 
  Adaptation 
  Transformation 

  Online testing using ModelJUnit 
  How to represent EFSMs in ModelJUnit 
  How to write adapters 

2 



Outline 
  Property-based testing 

  QuickCheck 
  Haskell 

Note: All the examples in this lecture has been taken from 

  Chapter 11: Testing and quality assurance of Real World 
Haskell by B. O'Sullivan, D. Stewart, and J. Goerzen 
(Available at 
http://book.realworldhaskell.org/read/testing-and-quality-assurance.html) 

3 



Property-Based Testing 

  Property-based testing is a kind of MBT, where test 
cases are automatically generated from a property 

  One of the difference with MBT in its classical 
definition is that test cases are extracted from a 
property, not a model of the system! 

  Such properties are written in  a formal language 
  First-order logic 

 
4 



QuickCheck in short 
  QuickCheck is a random testing tool 

  Embedded domain-specific language for defining 
properties (Haskell) 

  Generates and executes random test cases 
  Evaluates outcome of test cases against properties 
  Shrinks counter examples 
  Originally for Haskell 

  Commercial version 
  QuviQ (http://www.quviq.com) 
  Can test Erlang and C programs 

5 



A sorting algorithm: Quicksort 
  Quicksort is a divide and conquer sorting algorithm 

  It first divides a large list into two sub-lists: the low 
elements and the high elements 
  It then recursively sorts the sub-lists  

Algorithm 

1.  Pick an element, called a pivot, from the list 

2.  Reorder the list so  
  All elements less than the pivot come before the pivot  
  All elements greater than the pivot come after it (equal values can 

go either way) 
  After the pivot is in its final position (partition operation) 

3.  Recursively sort the sub-list of lesser elements and the sub-list of 
greater elements 

Base case: lists of size zero or one, which never need to be sorted 6 



Group exercise 

  Write a recursive version of the quicksort algorithm  

  You can write it as a mathematical function, or in any 
functional programming language 

Groups 2-5 persons: 15 min 
7 



Quicksort in Haskell 

-- file: ch11/QC-basics.hs 
import Test.QuickCheck 
import Data.List

qsort :: Ord a => [a] -> [a] 
qsort [] = [] 
qsort (x:xs) = qsort lhs ++ [x] ++ qsort rhs 

where lhs = filter (< x) xs 
             rhs = filter (>= x) xs

filter applies the 
predicate to the list 
and filters the list 
with those satisfying 
the predicate 

Not an efficient 
implementation, 
but simple and 
elegant! 

8 



A simple property about qsort 

-- file: ch11/QC-basics.hs 

prop_idempotent xs  =  qsort (qsort xs) == qsort xs

ghci> prop_idempotent [] �


ghci> prop_idempotent [1,1,1,1] �
 

ghci> prop_idempotent [1..100] �


ghci> prop_idempotent [1,5,2,1,2,0,9] �


Interesting but 
tedious: Better 
to automatically 
generate random 
data! 

Does this 
property 
hold? 

�
�
True 

�
True �


True�


True 9 



Generating test data with 
QuickCheck 

ghci> generate 10 (System.Random.mkStdGen 2) arbitrary :: [Bool]�
[False,False,False,False,False,True]

arbitrary is a 
function from the 
Arbitrary type 
class, to generate 
data of each type 
(Don’t worry about it 
for now…) 

Generates a random 
list of boolean values 

ghci> :type quickCheck �
quickCheck :: (Testable a) => a -> IO () 

ghci> quickCheck (prop_idempotent :: [Integer] -> Bool) �
00, passed 100 tests.

Shows the type of 
QuickCheck 

idempotent is polymorphic: 
needs to be given a type to 
generate data 

10 



Using QuickCheck to test a 
property about qsort 

-- file: ch11/QC-basics.hs 
prop_minimum xs  =  head (qsort xs) == minimum xs

ghci> quickCheck (prop_minimum :: [Integer] -> Bool) 

Should the program pass the 
test? (Does the program 
satisfy the property?) 

It fails when sorting 
an empty list! 

0** Exception: Prelude.head: empty list

11 



Using QuickCheck to test a 
property about qsort 

-- file: ch11/QC-basics.hs 
prop_minimum' xs = �
          not (null xs) ==> head (qsort xs) == minimum xs

ghci> quickCheck (prop_minimum’ :: [Integer] -> Property) �
00, passed 100 tests.

-- file: ch11/minimum.hs
 head :: [a] -> a
 head (x:_) = x 
head [] = error "Prelude.head: empty list" 

minimum :: (Ord a) => [a] -> a
 minimum [] = error "Prelude.minimum: empty list" 
minimum xs = foldl1 min xs

head and minimum not defined 
for empty lists!  

Property needs to 
be redefined, 
filtering invalid data 

Property type, not 
Bool! (Filters non-
empty lists before 
testing them) 

foldl1 takes the first 2 items of 
the list and applies the function 
to them, then feeds the 
function with this result and 
the 3rd argument and so on 

12 



Group exercise 

  Write 4 more properties about the sorting function 

  You might think about ”inherent” properties (i.e., what 
does it mean to be sorted), and/or additional properties 
(e.g., what happened when you operate on sorted lists)  

Groups 2-5 persons: 20 min 
13 



Group exercise: Some properties 

prop_ordered xs = ordered (qsort xs) 
     where ordered [] = True 

  ordered [x] = True 
  ordered (x:y:xs) = x <= y && ordered (y:xs)

prop_permutation xs = permutation xs (qsort xs) 
     where permutation xs ys = null (xs \\ ys) && null (ys \\ xs)

Prop 1: The list should be ordered  

Prop 2: The ordered list is a permutation of the original list 

14 



Group exercise: Some properties 

prop_maximum xs = 
     not (null xs) ==> last (qsort xs) == maximum xs 

prop_append xs ys =  
     not (null xs) ==> 
     not (null ys) ==> 
       head (qsort (xs ++ ys)) == min (minimum xs) (minimum ys)

Prop 4: The minimum of two concatenated sorted lists is 
the minimum of the minimum of both lists 

Prop 3: The maximum of the sorted list is the last element 

15 

This is not exactly what is written 
in the informal spec. Why? Is it a 
good property anyway? 



Testing against a model 

prop_sort_model xs  =   sort xs == qsort xs

  It is possible to compare an implementation with a 
reference implementation (prototype)  

The implementation 
(SUT) 

The reference 
implementation 

16 



QuickCheck can do more… 
  Testing against FSMs 

  Testing concurrent systems 

  Erlang, C programs 

Next lecture: 

  John Hughes’ lecture: Testing race conditions 
(concurrency) 

Next week: 

  More deep concepts in QuickCheck in Thomas Arts’ lecture: 
How to write (recursive) generators 

17 



Assignment 7 

You will have to: 

  Write properties in QuickCheck to test Haskell 
programs 

18 



About the revision lecture 

  Remember to send to the student representatives 
(SR) what you would like to see in the last lecture 
(Wed May 22) 
  Send an email to the SR before Wed May 15! 

19 



Futher Reading 
Read the following: 

  Bryan O'Sullivan, Don Stewart, and John Goerzen. Real 
World Haskell  
  Chapter 11: Testing and quality assurance 
  Available online at 

http://book.realworldhaskell.org/read/testing-and-
quality-assurance.html 

  For assignment 7 you should read the chapter above, in 
particular the section “Testing case study: specifying 
a pretty printer” 

  Also, for the two remaining lectures on QuickCheck 
read the other listed papers at the course homepage  

20 



Demos now… 

  ModelJUnit 

  QuickCheck 

21 


