
Model-Based Testing
(DIT848 / DAT260)

Spring 2013
Lecture 8

FSMs, EFSMs and ModelJUnit

Gerardo Schneider
Department of Computer Science and Engineering

Chalmers | University of Gothenburg

 1

Outline
  The Qui-Donc example

  Modeling Qui-Donc with an FSM

  Some simple techniques on how to generate tests from
the Qui-Donc model

  EFSM

  The ModelJUnit library

  A Java ”implementation” of an EFSM for the Qui-Donc
example

  Remark: No test automation today!
2

Qui-Donc

  France Telecom service to get name and address given a
phone number (vocal service)

  Informal requirements of the system in what follows

3

Utting & Legeard book:
Sec 5.1.1 pp.140! Source: M. Utting and B. Legeard, Practical Model-Based Testing

Qui-Donc: Informal requirements (1)

4

Qui-Donc: Informal requirements (2)

Source: M. Utting and B. Legeard, Practical Model-Based Testing

Utting & Legeard book:
Sec 5.1.1 pp.141!

5

Modeling Qui-Donc with FSM
  Decision: What to abstract?

  Too big! (FSM cannot represent data structures, variables,
timeouts, etc.)

Groups 2-5 persons: 5-10 min

What would you abstract?

Suggest some interesting cases to keep (representative),
others that might be “forgotten”

6

Modeling Qui-Donc with FSM

  For testing purpose our abstraction considers:
  The 4 ”special” keys (1, 2, *, #)
  4 representative numbers

  18 - Emergency number
  num1 (03 81 11 11 11) – disconnected number (not in the database)
  num2 (03 81 22 22 22) – we know address and name
  bad (12 34 56 78 9) – wrong number (9 digits instead of 10)

  Decision: What to abstract?
  Too big! (FSM cannot represent data structures, variables,

timeouts, etc.)

7

Modeling Qui-Donc with FSM
Relating Inputs with the Real World

  dial: pick up phone, dial Q-D service, wait for response

  1, 2, *, #: press the corresponding key

  18: press 1 then 8, then # (within 6 sec)

  num1: press all digits followed by # (within 20 sec)

  num2 (bad): press all digits followed by # (as quick as possible)

  wait: wait without pressing anything until Q-D does
somehting (timeout: 20 sec for ENTER state, 6 sec for others)

  Input alphabet of our model: {dial, num1, num2, bad, 18, 1,
2, *, #, wait}

8

Qui-Donc FSM Model

Utting & Legeard book:
Table 5.1 pp.146!

Source: M. Utting and B. Legeard, Practical Model-Based Testing

Outputs
Example of Input/
Output sequence:

dial/WELCOME,
wait/WELCOME,
*/ENTER,
num1/NAME+INFO,
2/ADDR,
wait/INFO,
wait/BYE

9

Modeling Qui-Donc with FSM

  We will use a special kind of FSM

  A Mealy machine is an FSM where
  Each transition is labeled with input/output (exactly one input

per transition; output may be empty)
  Must have one initial state
  May have one or more final states

  Generated tests should start in inital state and finish in
one of the final states
  If no final state: allowed to end in any state

10

Qui-Donc FSM
Model

Utting & Legeard
book: Fig. 5.1 pp.145! Source: M. Utting and B. Legeard, Practical Model-Based Testing

•  Not easy to model
timeouts in FSMs

•  To model them we
have 3 different
states Star1, Star2,
Star3, (similarly for
Enter and Info)

•  That’s why we have
repeated wait/_ on
the transitions from
those states (message
repeated up to 3 times)

11

Representations of FSM
State Table

Utting & Legeard book:
Table 5.2 pp.147! Source: M. Utting and B. Legeard, Practical Model-Based Testing

12

”Properties” of FSM
  Deterministic

  For every state, every outgoing transition labeled with
different input

  Initially connected
  Every state reachable from initial state

  Complete
  For each state, outgoing transitions cover all inputs

  Minimal
  No redundant states (no 2 states generating the same set of input/

output sequences with same target state)

  Strongly connected
  Every state is reachable from every other state

13

Generating Tests
(from the Qui-Donc model)

We will see in what follows:

  State, input, and output coverage

  Transition coverage

  Explicit test case specifications

  Complete testing methods
  More powerful FSM test generation

14

Generating Tests:
State, input, and output coverage

  State coverage: Percentage of FSM states visited
  Q-D: 1 test, 12 transitions 100% (dial,wait,wait,*,wait,wait,

18,*,num2,wait,wait,wait – omitting outputs)
  State coverage in FSM similar to statement coverage in PL

  Input coverage: Nr. of diff. input symbols sent to SUT
  Q-D: 1 test, 90% out of 10 inputs

(dial/WELCOME, */ENTER, bad/ERROR, num1/SORRY,
num2/NAME, 1/SPELL, 2/ADDR, */ENTER, 18/FIRE,
wait/BYE)

  Output coverage: Nr. of diff. output responses from SUT
  Q-D: same test sequence as for Input coverage, covers 9/11

outputs 15

Generating Tests:
Transition coverage

  How many FSM transitions have been tested

  Random path: will eventually cover all

  Transition tour: best way – in particular the Chinese
Postman algorithm (CPA)
  CPA finds the shortest path

  Transition coverage in FSM similar to branch coverage in
PL

  Full transition coverage is a good minimum to aim!

  See Utting&Legeard, listing 5.2 (pp.152) for the output of the
Chinese Postman algorithm in Qui-Donc

16

Generating Tests:
Explicit test case specifications

  Useful to write an explicit test case specification
  Define which kind of test to be generated from the model

(low-level)
  High-level test designed by engineer;

low-level details and expected SUT output from the model

  Q-D (example) - Test slow people failing to complete input
before timeout: *,Star3,*,Enter3,*,Info3,*
  Regular expression over seq of states
  ”*” is a wildcard (any seq of actions)
  Shortest test case satisfying the above: dial/WELCOME,wait/

WELCOME, wait/WELCOME, */ENTER,wait/ENTER,wait/
ENTER,num2/NAME,wait/INFO,wait/INFO,wait/BYE

We will see QuickCheck (property-based testing) in later lectures! 17

Generating Tests:
Complete testing methods

  Many complete test generation methods for FSMs were
invented (60’s-80’s): D-method, W-method, Wp-method, U-
method, etc
  Guarantees that SUT is ”equivalent” to the FSM
  Strong assumptions on the FSM: deterministic, minimal,

complete, strongly connected, and must have the same
complexity of the SUT

  Some relaxation possible: weaker results

Read Utting&Legeard section 5.1.4 (pp 155-157), and references therein

18

Extended FSM (EFSM)
  EFSMs are like FSMs but more expressive (internal

variables encode more detailed state information)
  In FSM: Many Enteri states

In EFSM: one Enter state + timeouts variable to count nr of
timeouts

  It seems to have a small nr. of visible states: in reality a
much larger nr. of internal states!

  Mapping large set of internal states of an EFSM into the
smaller set of visible states: abstraction

19

Extended FSM (EFSM)

The two levels of abstractions give better control: used for
different purpose:

  Medium-size state space of EFSM (and code in transitions)
used to model the SUT behavior more accurately and thus
generate more precise inputs and oracles for the SUT

  Smaller nr. of visible states of EFSM: defines an FSM used
to drive test generation (eg, algorithm for transition tour)

Source: M. Utting and B. Legeard, Practical Model-Based Testing

”An EFSM can model an SUT more accurately than an
FSM, and its visible states define a 2nd layer of
abstraction (an FSM) that drives test generation”

20

Extended FSM (EFSM)
Example

Source: M. Utting and B. Legeard, Practical Model-Based Testing

Utting & Legeard
book: Fig. 5.2 pp.158

  Assume an SUT with infinite state
space (integers)

  Model as EFSM with 2 int var
(x,y: 0..9)
  10x10=100 internal states

  Partition state space into 3 (based
on our test objectives):
A (y>=x), B (y<x and x<5),
C (y<x and x>=5)

  Code in transitions to make state
updates
  AB1: x,y := 1,0 (no guard)
  AB2: y := 0 (guard: [x<5])
  AB3: y := y-1

(guard [x=y and 0<x<5])

21

The ModelJUnit Library
  A set of Java classes designed as an extension of JUnit

for MBT

  Allows (E)FSM to be written in Java, and tests are run as
for JUnit

  Provides a collection of traversal algorithms for
generating tests from the models

  Usually used for online testing (tests executed while
being generated)

  EFSM plays 2 roles
  Defines possible states and transitions to be tested
  Acts as the adaptor connecting model and SUT (more on this in

next lecture)
22

The ModelJUnit Library
  Each EFSM must have at least the following methods

  Object getState()
  Returns the current visible state of EFSM (defines an abstraction

function between EFSM internal state to EFSM visible states)

  Void reset(boolean)
  Resets the EFSM to initial state – When online testing, also reset

SUT (or create new instance)

  @Action void namei()
  Define transitions of the EFSM (also send test inputs to SUT and

check answers)

  boolean nameiGuard()
  Guard of the action method; actions with no guard defined have an

implicit true guard
23

Qui-Donc’s EFSM
(In Java)

Source: M. Utting and B. Legeard, Practical Model-Based Testing

Utting & Legeard
book: List. 5.3 pp.163

states

Initial
state

Get
current
state

Reset

24

Source: M. Utting and B. Legeard, Practical Model-Based Testing

Utting & Legeard
book: List. 5.4 pp.164

Qui-Donc’s EFSM
(In Java)

Input
(action)
“star”

 Transitions
with input

“star”
incoming to

“Enter” state

Guard of
“star”

 3 transitions
labelled with
“star” (“*”),
from states

“Star”,
“Emerg”, and”

“Info”

25

EFSM of Qui-Donc
(from the Java model)

Utting & Legeard book:
Table 5.2 pp.147!

Source: M. Utting and B. Legeard, Practical Model-Based Testing
26

Group exercise

27

  Is the graph an Euler graph?
No!

Groups 2-5 persons: 5-7 min

  Give (abstract) test
cases to obtain 100%
transition coverage

Proposed solution:

wait, dial, wait, star,
num1, bad, wait, num2,
key1, key2, wait, star,
num18, star, num18,
wait

  Eulerize it!
Add ”num18”

Validating the Model

  Possible to write a main method to call methods
iteratively

  Do a manual traversal using transition tour (e.g.. Chinese
Postman)

  You might find errors in your model
  Correct, iterate

28

Generating Tests from
the Model

  In the Qui-Donc - You can generate a random walk to get
a test sequence randomly generated

  You can use the output as a manual test script

  To manually test the real system by giving the inputs and
checking the expected output

29

Final Remarks

  We have used ModelJUnit to generate offline testing
only
  The Qui-Donc example is a physical device and we used

EFSM and ModelJUnit to automatically generate test
sequences to be manually tried on the physical device

  For online testing you need to define an adaptor, which
links the model to the SUT
  This is possible in ModelJUnit (next lecture)

30

References

  M. Utting and B. Legeard, Practical Model-Based
Testing. Elsevier - Morgan Kaufmann Publishers, 2007
  Chapter 5 (Sections 5.1-5.2)

31

